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A FRAMEWORK FOR CLASSIFIER SINGLE TRAINING PARAMETER
OPTIMIZATION ON TRAINING TWO-LAYER PERCEPTRON IN A
PROBLEM OF TURNED 60-BY-80-IMAGES CLASSIFICATION

A 13-itemed scenario framework for classifier single training parameter optimization is devel-
oped. Formally, the problem is to find global extremum (mostly, minimum) of function as a
classifier output parameter against its single training parameter. Linking the scenario theory to
praxis, the classifier type has been decided on two-layer perceptron. Its input objects are mono-
chrome images of a medium format, having a few thousands independent features. Within the
framework, the programming environment has been decided on MATLAB, having powerful
Neural Network Toolbox. Keeping in mind the stochasticity of the being minimized function,
there is defined statistical g-stability of its evaluation by a finite set of data. These data are mined
in batch testings of the trained classifier. For exemplification of the scenario framework, there is
optimized pixel-to-turn standard deviations ratio for training two-layer perceptron in classifying
monochrome 60-by-80-images of the enlarged 26 English alphabet capital letters. The goal is to
find a pixel-to-turn standard deviations ratio for the training process in order to ensure minimum
of classification error percentage. The optimization relative gain is about a third. The developed
framework can be applied also for classifier multivariable optimization, wherein it instructs
which item operations shall regard the corresponding multiplicity of variables.

Keywords: classifier training parameter optimization, statistical evaluation, optimization
scenario, two-layer perceptron, classification error percentage, turned objects classification,

monochrome image, pixel-to-turn standard deviations ratio, training set.

NOMENCLATURE

CEP is a classification error percentage;

CNN is a convolutional neural network;

COS is a classifier operation speed;

GT is a general totality;

HMLNN is a hierarchical multilayered neural network;

IMR is an information-memory resources;

IRGSS is an independently random-generated subsets;

LIF is a lot of independent features;

4800-LCRM is a 4800-length-column-reshaped matrices;

2L P is a two-layer perceptron;

Ml is a monochrome image;

MOZ is a matrices of ones and zeros;

PD s a pixel distortion;

PDTM6080I is a pixel-distorted TM6080I;

PTSDR is a pixel-to-turn standard deviations ratio;

4800-250-26-P 2LP is a having 4800 neurons in the input
layer, 250 in SHL, and 26 in the output;

SD is a standard deviation;

SHL is a single hidden layer;

NDR is a non-distorted representatives;

NV isa normal variate;

TD is a turn distortion;

TM6080I is a turned monochrome 60-by-80-image;

ZEUV isa zero expectation and unit variance;

€-SSE is a statistically e-stable evaluation;

A, isa matrix representing the g-th class NDR;
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A g (k ) isa 60 x 80 matrix as the ¢-th class representative
TM6080I formed at the k-th stage;

A eosor is @ 4800 x 26 matrix of PDTM60S0T of all

NDR formed at the 4-th stage;

AY) o 152 480026 matrix of TM6080I of all NDR
formed at the k-th stage;

C is a number of pure objects’ replicas;

F is a number indicating at smoothness in training the
perceptron;

/(o) the classifier output parameter influenced with
the training parameter o;

G is a set of indices;

I is aidentity matrix;

n is a number of the sampled points from the segment of
the parameter values;

N 1s a number of classes;

classes
N, is a number of the object features;

features

Prc(r) isan averaged CEP;

QpaSS is a number of training samples to be passed
through 2LP;

risa variable of PTSDR;

T, isa target matrix for the i -th training subsample;

o isa training parameter influencing significantly on
the classifier output parameter;

B(k) the angle through which NDR is turned;
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Opp isa SD of PD;
orpisa SD of TD;

cgg is a SD of PD at the k-th stage of PDTM6080I set

formation;

o4 is a SD of TD at the k-th stage of TM608OI set
formation;

max
G%D )

G%r;ax) is a maximum of SD in TD;
= is a matrix of values of NV with ZEUV,
&(k) is a value of NV with ZEUYV, raffled at the k-th

stage of TM6080I set formation.
INTRODUCTION

is a maximum of SD in PD;

The object classification is an important constituent in
automation processes [1, 2]. Main hardness in classifying
objects arises when the object has LIF, and anyone of objects
cannot be ignored for simplification. Usually, a LIF object is
a high resolution image after preprocessing [2, 3]. Such
images are used in the manufacturing control, technical and
medical diagnostics, safety watching systems, astrophysical
explorations, and so forth [1, 3, 4]. A hard problem of LIF
objects classification lies in COS. More particularly, COS is
bettered by reducing the huge IMR which are consumed by
the classification system, including the classifier [2, 4, 5].
The classifiers on the basis of HMLNN, CNN, cognitrons
and neocognitrons perform perfectly over objects for their
classification. At the same time, such classifiers take long
periods for the performance and consume gigantic IMR [4,
6, 7]. And vice versa, perceptrons with one or more hidden
layers consume far less IMR, while they are much faster. In
this way, the perceptron with SHL is frequently used. This
i1s 2LP, and it is the fastest for the most of classification
problems, where the object features are distorted by a
statistical law having near-normal distribution. However, 2P
cope poorly with classification problems, where object
distortions are specific [5, 8]. For images, those specific
distortions are skewness, nonlinear scaling, turn, severe
rotation, shift, etc. Hence, there is a known duality in the
problem of classifying LIF objects. Either we are to better
COS and IMR consumption for perfectly performing
HMLNN, CNN, cognitrons and neocognitrons, or to optimize
some parameters of 2LP to get it trained suitably on
specifically distorted LIF objects. And it is plain that the
way with 2LP is preferable to bettering COS and IMR
consumption with far beyond complicated neuronets.

The article goal is to develop the framework of the
scenario type for 2LP classifier single training parameter
optimization. At that, the classifier input is fed with LIF
objects, making heuristic methods of optimization
inapplicable. For achieving the goal, both theoretical and
practical phases are to be delineated. Preceding the praxis,
theoretical phase is tasked to give a justified succession of
jobs whose accomplishment guarantees the classifier
influential improvement on its output parameter. The tasking
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will be replenished by verifying practically whether that
output parameter is bettered over the specifically distorted
objects. And the conclusive task is to infer from the
development and investigation results.

1 PROBLEM STATEMENT

Let, without loss of generality, we have o and f (oc) ,

which are both positive. Formally, the decided problem is to
find

o e arg extrf(ot) @1

a>0

and get 2LP, performing at ./ (06* ) . In practicing, classifiers

or classification processes mostly have characteristics
desired for their minimization. And, naturally, the training
parameter o has its bounds o, and o that is
o €[ Omin; Cmax | fOr Opay > 0nin > 0. Henceforth, the
problem (1) is rendered concrete:

min max>

* .
o e€arg min
(XE[(X o

f(a). @

min> “max ]

2 REVIEW OF THE LITERATURE

2LP in preference to far beyond complicated neural
networks has a great many of its parameters. They are
divided into the couple of associated parametric groups.
The first one is assembled from size of SHL and transfer
functions [5]. The second one is assembled from parameters
of the training algorithm, methods of the algorithm
implementation, and methods of forming training samples
[8]. All these parameters and methods are formalized as
training parameters [9, 10].

Typically, SHL size and transfer functions of 2LP are set
up heuristically, being based on sizes of input and output
layers and recent experience [5, 8, 9, 11]. The classifier training
parameters optimization is only possible before the classifier
is trained. Once 2LP has been trained, the classification
process attains its characteristics. Stable estimations of
these characteristics can be valued after huge batch testing.

The training process is defined with the set of training
samples, feeding the input of 2LP [5, 8, 12]. Parameters of
the set of training samples in the training process are specific
for a classification problem [5]. To get the classification
process improved, training samples are modified accordingly
to types of object distortion [10, 13]. The modification has
its own parameter or parameters. Sweeping them gives,
speaking factually, diverse classifiers. And the best classifier
could be chosen among those ones.

The best classifier choice nonetheless requires a
framework of successive operations over the classifier
training parameters to get them optimized. Before getting
started, a parameter to be swept is to be appointed along
with the classification process output parameter, which is
influenced with the being swept parameter. Hence there is a
want of developing the scenario of making the classifier
optimization upon its parameter from a raw 2LP up to the
classifier having one of its characteristics improved.
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3 MATERIALS AND METHODS

For solving the problem (1), the function f(a)
evaluation requires defining the object type. The object type
is actually defined with its format containing information
about the number Np,es- Dimensions do not matter
because the object initial mathematical presentation
(aggregate of its features) is reshaped into line array.

A convenient object type is MI of a medium format, having
a few thousands features. This type and format allows
watching and rendering MI distortions readily. The medium
format ensures delayless investigation procedures and the
classification results acquisition. And those results are going
to be powerfully propagated on other objects of medium
formats.

Within MATLAB, having powerful Neural Network
Toolbox [14, 15] for programming and simulating neural
networks, MI bitmap file is coded with ones (white color)
and zeros (black color). Therefore the finite subset of GT is

of MOZ, containing altogether 2 Nteatures M Wholly, GT is
infinite, wherein the pixel’s value is not necessarily equal to
1 or 0, but it is a real number. Namely within the infinite GT,
the specifically distorted objects must be recognized and
classified.

After the object type is defined,

Niasses € N\{1} is prescribed. And so there is defined GT

containing all permissible objects of the defined type. Within
the defined GT, NDR of classes are fixed.

Having the object type, N, NDR and GT, the

number of neurons in SHL of 2LP is assigned. Rules for SHL
neurons number assignation are drilled on experience [5, 11,
16]. Assigning transfer functions in the layers of 2LP is the
last item in the configuration of 2LP.

Having had the configuration of 2LP, there is a MATLAB
function for training to be assigned. Then the configured
2LP is initialized on MATLAB Neural Network Toolbox
simply with the function «feedforwardnet» (the similar
function «newtb» if for MATLAB versions before R2010).

The function /(o )evaluation starts with estimating the

number

lasses

endpoints of the range [amin; amax]. Having estimated
them, this range is to be sampled with a step. This gives a
finite subset of points of the training parameter o. 2LP is
trained over this subset, and so the statistics of the trained
2LP is accumulated. By the way, the sampling step can be
non-constant if needed, so the subset is

{och}z:l < [Omin: Omax | by e N\{1, 2}
at o] =0y, and o, = Gy - 3)

Really, after the sampling (3) the problem (2) is

o e arg min f(ot) @)

ote{(xh }Z:]

with the function evaluation

1

G 2@ ®

geG

f(a)

by the g-th polyline f<g>((x), whose values
{f<g>(a)}

each of  points {a, }

are taken via testing the trained 2LP in
aefay, }Zzl
n
h=1’
strictly, the batch testings are sufficient for evaluating the

repeated for |G| times. Speaking

function f (o) adequately if for some & >0

|J;1 (OL)—fB (OL)|<8 v OLe[ocmin; amax] (6)

by
flo)=t Y 79,
|1|geG1cG
)= T 1% () )
|2|geG2cG

for the probability P(G; NG, # &) which is such that

lim P(GNG, #@)=0. ®)

|Gl
For wide ranges and insufficiently completed set of
indices G, having its insufficiently great cardinal |G|, the

condition (6) fails. However, the segment [(xmm 5 Omax ] may

be narrowed to a subsegment by the following reason. If
there is great likelihood of that

f(al)gf(ob) for Omin <O <O < Oypyx ©
then we can narrow the segment [Olpin; Omay ] tO
[0min; 9] by oge(aj;0y) or, for instance, to

[amin; (ocl +0a, )/ 2]. Then we proceed in batch testings

with re-estimation of the right endpoint o, =0y.

Statistical sufficiency is very important here. Thence is an

unambiguous definition concerning sufficiency.
Definition 1. Function (5) is called ¢ -SSE by the values

{{ ) (a)}ae{ah}z_l }gEG (10)

if for fixed ¢ >0 and c¢(¢&)e N and any pair {G|, G5} of
IRGSS {G; = G, G, = G} ofthe indices’ set G with

min {|Gy, |Gy [} >c(e) (11)
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the inequality

/(@)= F(a)|<e Vaefo,)r, (12)

holds by (7) and (8).

So then for approaching to the problem (4) solution, in
accordance with Definition 1 we need &-SSE (5) for
sufficiently small ¢ and great c(s). Practically, € can be
assigned to

aéso-[ min f(a)] (13)

{ah}zzl

by, say, g €{0.1,0.050.02,0.01} (traditional
exemplification). The integer ¢ (&) is of the order of hundreds

at least. And there predictably thrusts the concept of
continuity in g-SSE.
Definition 2.1. Function (5) is called continuous £-SSE

by the values (10) if V &€ >0 3 6 > 0 such that the inequality
(12) holds by (7) and

P(GlﬂGz ¢®)<8 (14)

for IRGSS {G1 cG, G, c G} by (8).
An alternative definition to Definition 2.1 handles the
relationship between cardinals of IRGSS and (G . This one

is handy standing off the probability (14) calculation.
Definition 2.2. Function (5) is called continuous £-SSE

by the values (10) if V £>0 38¢€(0;1] such that the
inequality (12) holds by (7) and

G NG, J
p| P72l 5o (15)
( lg

for IRGSS {G|, = G, G, = G} by (8).

These two versions of continuity in ¢-SSE are purely
theoretical. However, they drive to solving the problem (4)
statistically inasmuch as ¢-SSE does not determine the

minimum point o itself. Note that probability (15) is

G NG

M < 6
9

Definition 3. The point o is called solution of the
problem (4) with £-SSE (5) by the values (10) if the statement

apparently substituted with the expression

aefa, ) aefoy |,

a*e{arg min fl(a)}ﬂ{arg min ﬂ(a)}i@ (16)

holds at (7) by any pair of IRGSS {G| = G, G, < G} with
the condition (11) for their cardinals.
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Verification of that the training parameter o has been
bettered over the specifically distorted objects, having

become o, is carried out to get convinced of that

f(oc*)<f((x) v ae{ah}zzl \{OL*}, (17)

With the set G for verification, the function evaluation
(5) is suitable for (17).

Entirely, scenario for the single training parameter
optimization of 2LP classifier is given in 13 items:

1. Defining the object type.

2. Prescribing the number of classes Nejases € N\V{1}.
3. Defining GT.

4. Fixing N .40 NDR of classes within the defined GT.
5. Assigning SHL neurons number.

6. Assigning transfer functions in the layers of 2LP.

7. Assigning a MATLAB function for training.

8. Appointing the parameter o along with the

classification process output parameter f (a.).
9. Estimating the range [ocmin; ocmax] endpoints.

10. Sampling the range [ocmin; (xmax] into the finite
subset (3).

11. Proceeding in batch testings of the trained 2LP in each
of those points of the finite subset (3) in order to obtain
statistically stable evaluation (5) for solving the problem (4).

12. If for fixed & and ¢ (&) the (n —1)-segmented polyline
(5) is &-SSE then go to solving the problem (4) and return

the result {(X*, S (Ol* )} along with verification of that.
13. If the problem (4) has been not solved then go to
narrowing the segment [(Xmin; Otmax] to [O‘min; 0‘0] by

o € (ocl; Otz) if possible and recur to the item 10 with

Omax = O¢; if the narrowing is impossible then recur to the

item 11 with the increased |G| .
4 EXPERIMENTS

Let’s exemplify the developed scenario framework in the
problem of turned objects classification. This is a widespread
problem, when recognizing plane images or their contours
the object rotation effect springs up. It is caused with that
there cannot be ensured the symmetry just on the moment
when the object is captured after it has been traced.

May the format of MI be 60 x 80 and may an MI model
be the enlarged English alphabet capital letter by
N, = 26. Therefore the finite subset of GT is of 60 x 80

classes
MOZ, containing altogether 2430 MI by Npures = 4800.
Wholly, GT is of matrices whose elements are real numbers.
Thus there are 26 capital letters as NDR.

The input layer in 2LP has 4800 neurons, and the output
layer has 26 neurons. The size of SHL in 2LP for the problem
of classifying TM6080I can be assigned to 250 neurons.
Transfer functions are log-sigmoid [5, 8, 10, 12]. This
4800-250-26-P is initialized with «feedforwardnet» («newfhy)
by 1206776 weight and bias values. For training perceptrons
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there is the backpropagation algorithm, having many
methods of its implementation in MATLAB. One of them is
the method of a MATLAB function «traingda» [16], where
weight and bias values are updated according to gradient
descent with adaptive learning rate [10, 12, 17, 18]. Every
4800-250-26-P shall be trained with the function «traingda»,
guaranteeing quick training process passage.

In the training process for classifying TM6080I, the
training set is formed as addition of matrix of pixel-distorted
images and matrix of turned images. Intensity (deepness) of
PD is measured via SD opp and intensity of TD is measured
via SD oOpp, determining the range of left and right
angulation due to TD. The parameter here is PTSDR

r=0pp/oTp, and the classification process output

parameter [ ((x) is CEP. Hence the problem (2) is

¥ earg  min _ppe (r) (18)

re[rmin; Tmax

by the function pgc (r), whose value at PTSDR r is an
averaged CEP over TM6080I or, probably, over PDTM6080L.
PTSDR is constant while training. In the statement

7 =0pp/STp both SD may vary, so the assignment

_ <max>/ <max>

I'=0pp /Orp ° isformally more correct. Due to a model

of TM6080I, an NDR is turned through the angle
k

B(k)=(180/7t)'6<ﬂ%§(k) in degrees around the center

point of M1, & :I,_F and F e N. SD in the angle B(k) is

<k> <max

S1H = STp ) -k / FYk= 1,_F . From the statement for the

angle B(k) by SD G<Tk3 it follows that the upper value

<max>
STD
turned so that its turning is impracticable for 2LP classifier,
when rotation angle is about w/8 and severer.

=0.2 is enough. Beyond this value MI becomes

In estimating the range [rmin; Tinax ] endpoints, note that

on G%n];ax> >2 PDTM6080I becomes over-distorted, and
on cgn,;a*> <0.005 PDisimperceptible. Then 7, = 0.025

and 7iyax =10 enclose the range [0.025; 10] which is to be

sampled.
In the training process the input of 4800-250-26-P is fed
with the training set

C+F F
{Pi<PDTM60801> }izl = {{A}zczr {A%%Tmosol }kl} (19)

of C e N replicas of all 26 classes NDR and f matrices of

PDTM60801 by targets {'I}}i(jFZ{I}gIF, where

4800 x 26 matrix A is formed by concatenating horizontally

26
4800-LCRM {Ag | by the g-th class NDR as 60x80

MOZ A, = (a§,€>) . At the &-th stage of PDTM60801
60x80

set formation, 4800 x 26 matrix

k k k) —
Ai’]%TM6OSOl = AT1\>/160801 + 5%1% = (20)
by Ggg _ G%ﬂ};aﬂ -k / FYk= I,_F Concurrently for (20),
(k) I= .
4800 x 26 matrix Aqyicocor = [ajq (k)J4800x26 is formed by
concatenating horizontally 4800-LCRM
_ < > 26
A, (k)= [a 9 (k } } ]
{ q( ) uy ( ) 60<80 | 4y - The g-th class NDR A,
becomes TM 60801
A, (kK)=1-p(1-A,. B(k), M, S) 1)

with MATLAB function «imrotate» in the map P, turning
the input MI negative 1- A, through the angle B(k), by
the interpolation method handle M and the handle S for
specifying the size of the returned negative MI. M1 is turned

in counterclockwise direction if (k) > 0, and for B(k) <0
M1 is turned clockwise; for 3 (k) =0 Ml remains NDR. After
all 26 classes NDR have been turned and become TM6080I,
the training set (19), formed with (20) by Ggg and (21), feeds
the input 0of 4800-250-26-P, passing through 4800-250-26-P

C+F _ {I}C+F

with targets {T; || iy for Op,e € N times.

5 RESULTS

In the initial probe, PDTM6080I-trained 4800-250-26-P
under set {C, F, Qpass} ={2, 8, 10} for the training set (19)
is tested with TM6080I at o1 €[0; 0.2]. As it has been

expected (figure 1), the first approximation over the subset

{0.025, 0.05, {0,14)20, {2+h}221} <[0.025; 10] (22)

would not have solved the problem (18)

* .
r earg min

r€[0,025; 10]pEC (r) @3)

because the rough 29-segmented polyline of the function

Pec () is not &-SSE. Notwithstanding that PDTM60801-
trained 4800-250-26-P were tested on only TM6080I and
|G| = 40 appeared to have been underrated, figure 1 prompts

that the range [0.025; 10] could be narrowed to the
subsegment [0.025; 1], where r* e [0.025; 1] apparently.
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pec (1)

0.63 -

r r
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0 0.1 0.2 03 0.4 05 06 07 08 0.9 1 11 12 13 14 15

Figure 1 — A rough 29-segmented polyline of the function Pgc (I’) over the subset (22), derived from 40 series of 400 batch testings
of PDTM6080I-trained 4800-250-26-P (tested on only TM60801 for faster preliminary results)

The second (40 series of 800 batch testings) and third
(100 series of 800 batch testings) approximations over the

subsets {O.O25h}ﬁg1 < [0.025; 1] and

{0.0ZSh}ﬁil < [0.025; 0.6] correspondingly do not givee-
SSE for the said |G| = 40 and |G| =100. Nevertheless, this
0.025-sampling lets feel and see that re [0.025; 0.6],
needing though to increase the cardinality of G . Thanking

to that all those 140 polylines of the function pgc () were
obtained on ().025-sampling, the cardinality here could be
increased just by superposing those 40 and 100 polylines.
However, neither superposition nor another 200 series
of 200 batch testings (appeared to be sufficient to understand
classification properties of an PDTM6080I-trained 4800-250-
26-P) give £-SSE of the function Pgc (). Here, although
the point r = 0.475 could have been ventured to accept it
as the problem (23) solution, it as well could be refuted.
Herewith, for obtaining &-SSE of the function Pgc (r)
at some reasonable ¢ thereis C (8) >340. And the shape of

the 23-segmented polyline of the function Pgc () becomes

more stochastic when extracting a lesser cardinality subset
from those 340 polylines. However, such deep stochasticity
may be provoked with the current conformation of training
and testing. Likely, number of passes Qpass =10 is too low

for expecting stable estimation. AlsoPTSDR r =5 for testing
is too high, randomizing the output results of estimations
additionally.

Nevertheless, there are evidences of that the problem
(23) solution is in the segment [0-025; 0.5] of PTSDR. The
further probe with taking Qpass =25 and testing
PDTM60801-trained 4800-250-26-P with PDTM60801 on

orp €[0; 0.2] and opp €[0; 0.2] or oppy €[0; 0.4] returns
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much the same stochasticity. A corollary is that the upper
value of PTSDR for testing does not influence much on

stochasticity of Pgc (r).
Final evaluation on |G| =370 (figure 2) shows that the

problem (23) solution is r* =0.225, having been taken off
Definition 3, though. In this situation, the most appropriate

conclusion would be that r* e (0.075; 0.3), where the cavity

of the polyline in figure 2 by r € (0.075; 0.3) can be seen.
And the local minimum at r = 0.075 gives almost the same
value of CEP therewith.

Henceforward, the best PDTM60801-trained 4800-250-
26-P by

<max> *

max
ofm {max)

=r -opp ' =0225-02=0.045 (24

under the set {C, F, Qpass} ={2, 8, 25} classifies TM6080I

at CEP pgc (0.225) < 0.28 and classifies PDTM60801 at CEP
Pec (0.225) < 0.48. Moreover, the best PDTM6080I-trained

4800-250-26-P by (24) under the set{C, F, Qpass} ={2,8,75}
classifies TM60801I at CEP pPgc (0.225) < 0.19and classifies
PDTMG6080I at CEP pgc (0.225) < 0.29, and the averaged

CEP is pgc(0.225)<0.24. As the example visualization,
figure 3 shows TM6080I which became recognizable for the
trained 2LP classifier after its single training parameter
optimization with (24).

The gain of the executed optimization depends on primary
heuristics in adjusting PTSDR. Thus, if it were I =1, what
could have been mostly expected in adjusting off
optimization, then the absolute gain is greater than 0.1 %. In
relative calculus, it is about a third. For cases with r > 1 the
gain is even higher.
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Pec(r)

0.494 -

0.492-

0.488

0.486 -

0.484 -

I
0 0.05 0.1 015 02 0.25 0.3 0.35 0.4

Figure 2 — 0,01-SSE of the function pp (r) on

oTp € [0; 0,2] and Opp € [0; 0,4], derived from 370 series
of 400 batch testings of PDTM6080I-trained 4800-250-26-P

Eventually, the 13-itemed scenario framework for classifier
single training parameter optimization allowed to have
trained 4800-250-26-P on PDTM6080I optimally in order to
perform classification TM6080I at the lowest CEP. And
PDTMG60801 are classified well also. The solution (23) can
be applied for training 2LP classifiers in other problems of
turned LIF objects classification, where number of features
is about 4800 and number of classes is about 26.

6 DISCUSSION

The 13-itemed scenario framework suggests a
straightforward succession of operations to get 2LP
classifier single training parameter optimized. Furthermore,
this framework with proper modifications (items 5, 6, and 7)
is applicable for optimizing training parameters of HMLNN
and CNN. Besides, the classifier input is not necessary to
be fed with LIF objects. The gain is either the lowest CEP or
getting a classifier output parameter bettered.

The operations from item 1 through item 8 do not require
statistics. Otherwise, for narrowing the segment

[Omin: Omax | We need great likelihood of that (9) holds.
The greatness is ascertained via series of the trained
classifier’s batch testings, where the series number is ofthe
order of several tens (hundreds) at least.

The hardest operation is the item 12. For ascertaining
statistical ¢-stability of the polyline (5), the requirement (13)
is purely practical. It is clear that for implementing the

conditions of Definition 1, the integer c(s) is specified by
experience for a few tens of IRGSS {G, G, }. These subsets

can be used also in Definition 2.2, before setting up G and ¢.
The same concerns Definition 3 and its key statement (16).

SN

But sometimes specificity of Definition 3 nonetheless makes
it irresolute for a single point solution in (16). Namely that
was a cause for accepting the interval solution

r" €(0.075; 0.3) in the exemplification with 4800-250-26-P
for TM6080I classification.

CONCLUSIONS

In the problem of 26 TM6080I classification by 2LP, the
CEP minimization relative gain is about a third. A best-trained
classifier produces CEP not greater than 0.19 % over TM6080L,
and not greater than 0.29 % over PDTM6080I. The stated
framework hereby provides the CEP minimization by optimizing
the 2LP classifier single PDTM6080I-training parameter.

An aggregate of other training parameters (two and more)
of'the classifier can be considered for optimization as well.
Anyrigorous framework for such multivariable optimization
shall include operations from item 1 through item 4. The
operations from item 8 through item 13 shall regard the
corresponding multiplicity of variables. Particularly for 2LP,
SHL size and integers C, F', 0, could be optimized for
CEP minimization. Certainly, optimizing each of them singly
is worse for CEP minimization than optimizing an aggregate
of them. In defiance of statistical hugeness, multivariable
optimization must help in shortening the training process
duration on average. And the corresponding framework
should have an effective operation item for plotting and
extremizing the piecewise linear hypersurface (function of
two or more variables) with values of the classifier output
parameter.
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Pomanrok B. B.

JI-p TexH. HayK, mpodeccop Kadeapsl IPUKIATHOH MaTeMaTHKU ¥ COLHABHON MH(POPMATHKH, XMETbHUIIKHH HAI[MOHATBHBIA YHH-
BEPCHUTET, YKpanHa

CTPYKTYPA V1A OITUMU3 AU OTAEJIBHOI'O OBYYAIOIIEI'O ITAPAMETPA KJIACCU®UKATOPA HA TTPHU-
MEPE OBYUYEHMA JIBYXCJIOMHOTIO MEPCENITPOHA B 3ATAYE KJIACCUPHUKAIIAN MTOBEPHY THIX N30BPAKE-
HHIT ®OPMATA 60-HA-80

Pa3pabateiBaeTcst cTpykTypa 13-3TalmHOro IUIaHa A1 ONTHMH3AIMU OTASIBHOro o0ydaromero mapaMerpa kiaccugpuxaropa. op-
MaJbHO 3aJada COCTOUT B HAXOXKACHUH INIOOAITBHOTO SKCTpeMyMa (TIPEeHMYIIECTBEHHO MHHIMYMa) (DyHKIUH, SBISIOMEHCS HEKOTOPBIM
BBIXOZHBIM TTapaMeTPOM KJIacCH(HUKATOpa B 3aBUCHMOCTH OT €r0 OTIENBHOTO MapameTpa o0ydeHus. CBA3bIBasl TEOPHUIO IUIAHA C ITPAKTH-
KO, THIIOM KJIaccudukaropa n30paHo IBYXCIOHHBIN mepcenTpoH. Ero BXOMHBIMI 00BEKTaMH SIBIISIOTCSI MOHOXPOMHEIE M300paKEHUS
cpenHero popMara ¢ HECKOJIBKHMH THICSTIaMH He3aBUCHMBIX IIPH3HAKOB. [10 IpeacTaBIeHHOH CTPyKType MpOrpaMMHOIT cpenoit n30paHo
MATLAB, o6nanatomeii momabsiM nHCTpyMeHTOM Neural Network Toolbox. Y4uThIBas cTOXaCTHYHOCTE MUHHMH3HPYEMOH (DYHKIHH,
OIIPE/IENIACTCS CTATUCTUYECKAs €-CTA0MIIBHOCTD €€ OLICHKH 110 KOHEYHOMY MHOKECTBY JaHHBIX. OTH JaHHBIC JOCTAIOTCS 110 MaKETHOMY
TECTHPOBAHUIO 00YYEHHOTO Kiaccupukaropa. B kadecTBe mpruMepa HCIOIb30BAHUS MPECTABICHHON CTPYKTYPHI IUIaHA ONTHMH3HPY-
€TCsI COOTHOIIIEHHE CPETHEKBaIPATHIHBIX OTKJIOHSHUH ITHKCEIbHBIX HCKaXXEHHH 1 TOBOPOTOB I 00yHIEHHs IBYXCIIOHHOTO TEPCeNITPOHA
C [EeJTbIO KIIacCU(HUINPOBATH MOHOXPOMHBIC H300pakeHus popmara 60-Ha-80 yBenM4eHHBIX 26 3aIaBHBIX OYKB aHIIIUICKOTO andaBuTa.
Llexnbio sBIIsIETCS HAXOXKICHHE ONPEIETIEHHOTO COOTHOICHUS CPEIHEKBAIPATHIHBIX OTKIOHEHHH ITHKCEIBbHBIX HCKKEHUH 1 TIOBOPOTOB
B IIporiecce 00yYeHUs JUTS TOTO, YTOOBI 00ECTIeINTh MUHUMYM HPOIIEHTa OMMOOK Kiaccu(ukaruy. OTHOCHTENBHBII BRIMTPHINI TaKOi
ONTHMHU3AIUH COCTABIISIET OKOJIO OHOI TpeTH. Pa3zpaboTaHHast cTpyKTypa MOXKeT OBITh IPHMEHEHa TakKe U IJIsT ONTHMHU3AIUH KIacCHH-
KaTopa C MHOTHMH ITepEMEHHBIMH, KacaTeIbHO Yero OTMeYaeTcs, KaKue MIMEHHO IeHCTBHS IUIaHa JOIDKHBI yIUTHIBATH MHO)KECTBEHHOCTD
HepeMEHHBIX.

KuroueBble c10Ba: ontuMH3anys napamerpa oOydeHHs Kaccu(pHUKaTopa, CTAaTUCTHIECKOE ONCHUBAHNE, TUIAH ONTHMHU3AIUH, IBYX-
CIIOMHBII TTePCENTPOH, MPOIEHT OMMOOK KIIaCCU(PUKAIIH, KTacCH(pHUKAINI 00BEKTOB C IIOBOPOTAMH, MOHOXPOMHOE H300paXkeHHe, COOT-
HOIIIEHHE CPEHEKBAIPATHIHBIX OTKIOHEHNH MUKCENbHBIX HCKaXXEHHI U TOBOPOTOB, 00yJaroIiee MHOXKECTBO.
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Pomanrok B. B.

JI-p TexH. Hayk, npodecop Kadeapy IpUKIaIHOI MaTEMAaTHKH Ta COLiadbHOI iHpopMaruky, XMeNbHUIbKUIT HAllIOHAIBHUH yHIBEp-
cUTeT, YKpaiHa

CTPYKTYPA IJ151 ONTUMBBAI OKPEMOI'O HABYAJILHOI'O ITAPAMETPA KJIACU®IKATOPA HA ITPAKJIAJI HA-
BUAHHSI IBOIIAPOBOI'O TEPCENTPOHY B 3AIAYI KJIACUDIKAL TOBEPHY TUX 30BPA’KEHb ®OPMATY 60-HA-80

Po3pobnsieTsest cTpykTypa 13-eTanHoro maHy AjIs ONTHMi3alil OKpEMOTo HaBYAJILHOTO mapamerpa kinacudikaropa. dopmaabHO
3aj7aua MoJIArae y 3HaXODKCHHI NIOOAIbHOTO eKCTpeMyMy (TiepeBaXKHO MIiHIMyMy) (yHKIIl, KOTpa € IeBHHM BHUXIIHHM IapaMeTpoM
kiacuikaropa 3anexHO BiJ Horo okpemoro mnapamerpa HaBdaHHs. I10B’s3yl0uM Teopilo IUIaHY 3 NMPAKTHUKOIO, THUIIOM KiacH(ikaTopa
06paHO JIBONIAPOBHI ITepCenTPoH. Moro BXiTHUMHU 06’ €KTaMH € MOHOXPOMHI 300pakeHHs CepeIHBOr0 (POPMATy 3 IeKLTHKOMA THCAIAMH
HE3aJISKHUX O3HAK. 32 IMOJAHOI0 CTPYKTYPOIO IPOrpaMHUM cepenoBuiieM oopano MATLAB, kotpe Mae moTyxHuil incTpyment Neural
Network Toolbox. 3Baxkaroun Ha CTOXaCTHYHICTH (YHKIII, [0 MIHIMI3Y€TbCS, 03HAYAETHCS CTATUCTHYHA £-CTAOUIBHICTH 1 OIHKH 3a
CKIHYEHHOIO MHOXKHHOIO 1aHuX. L]i jaHi TicTaroThesl 3a MaKeTHUM TECTYBaHHSIM HaBUEHOTO Kiacu(ikaropa. s npukiaxy BUKOPHCTAHHS
HOZIaHOI CTPYKTYpH IIaHYy ONTHUMI3y€ThCS CHIBBITHOIICHHS CEpeIHbOKBAAPATUYHUX BiIXWUIICHB MIKCENbHHUX CIIOTBOPEHb i MOBOPOTIB
JUIS. HAaBYaHHS J[BOIIAPOBOTO IIEPCENTPOHY 3 METOI0 KJIacH(iKyBaTH MOHOXPOMHI 300paxeHHs ¢opmary 60-Ha-80 36imbmeHUX 26
BEJIMKUX JITep aHIIichKoro andasiry. LU0 € 3HaxoKeHHs EBHOTO CIIBBIIHONICHHS CepeIHbOKBAIPATHYHIX BIIXUICHD MIKCEIBHUX
CIIOTBOPEHD 1 MOBOPOTIB Y MPOIIECi HABYAHHS [T TOTO, 00 3a0e3MeYnTH MiHIMYM BiICOTKA MIOMUIIOK Kiacudikariii. BinnocHuit Burpai
TaKol ONTHMi3aNil CkiIazae OIM3bKO TpeTUHU. Po3pobieHa cTpykTypa Moke OyTH 3aCTOCOBaHA TaKOXK 1 JUIs ONTHMi3alil Kiacudikaropa 3
6araTbMa 3MiHHHMMH, Y BiTHOILICHHI YOT0 3a3HAYa€ThCs, SKi caMe Ail IIaHy MaloTh BpaXyBaTH MHOXXHHHICTh 3MiHHHUX.

KunrouoBi cioBa: onTumizanis napamMeTpa HaBYaHHs Kiacu(ikaTopa, CTAaTHCTUYHE OLIHIOBAHHS, IUIAaH ONTUMI3alil, JBOIIAPOBUIA
HEePCEeNTPOH, BiICOTOK MOMMIOK KiacHikanii, kiacudikaiis 00’ €KTiB 3 TOBOPOTAMH, MOHOXPOMHE 300paKeHHS, CIIIBBIIHOIICHHS Ce-
PEAHBOKBAJAPATUYHHX BiIXHJIEHD MIKCEIbHUX CIIOTBOPEHD i IOBOPOTIB, HABUAJIEHA MHOXHHA.
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