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COMPARATIVE ANALYSIS OF THE COMPLEXITY OF CHAOTIC AND

STOCHASTIC TIME SERIES

The new approach to the recognition mechanism of the time series generating process based
on the results of the entropy and the recurrent analysis is proposed. The comparative analysis
of the realizations properties of chaotic and stochastic processes with different correlation
structure was carried out. It is shown that the derived set of information characteristics allows
to distinguish the realizations of deterministic chaotic and fractal random processes. Depend-
ing on complexity measures of time series of process parameters were obtained. The informa-
tion characteristics dependencies from the process parameters were obtained. The results of
bioelectric signals and financial time series study are presented.
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NOMENCLATURE

A is a control parameter;

ApEn is aproximate entropy;

C,, () is correlation integral;

Det is measure of determinism;

F(t) is a m-dimensional pseudo-phase space;

[; is a length of the i-th diagonal line;

K is a set of characteristics of recurrence and entropy
analysis;

N is a total number of points in the pseudo-phase space;

N, is anumber of diagonal lines;

n; ,, (€) is a number of vectors, that similar vector B, (i);

P(l) is a frequency distribution of the diagonal lines
lengths;

RE, ; isrecurrence plot;

RR 1s measure of recurrence;

x(¢) is a point of time series;
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x; 1s a point in the reconstructed pseudo-phase space;
¢ is a neighborhood size;

¢ is a autoregressive coefficient;

E(#) is a uncorrelated white noise;

oy 1s a diffusion coefficient;

1 is a delay period;

O(-) is a Heaviside function.

INTRODUCTION

Most dynamical systems are «complex systemsy», which
implies the ladder structure with nonlinear feedback. These
include the processes inherent in the human body and
nature, informational, physical, technical and social
processes. In practice, they are represented by time series,
which are a projection of the internal and external relations
ofthe dynamical system. One of the objectives of time series
analysis is to extract information from the series and infer
the properties and mechanism of the process that generates
the series.
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Mathematical models of complex systems exhibiting
irregular dynamics are both random and deterministic chaotic
processes. Identification of the mechanism generating
process based on characteristics obtained by time series is
a daunting task. There are many approaches to the study of
time series based on traditional statistical analysis, and the
methods of nonlinear chaotic dynamics.

The object of study is the deterministic chaotic and
stochastic fractal processes in the technical, economic and
biological systems. The subject of study is the time series
of a random type and the estimation methods of their
characteristics. The purpose of the work is the following:
based on the results recurrence and entropy analysis of
fractal time series to identify the mechanism of generating
process (deterministic or stochastic).

1 PROBLEM STATEMENT

Suppose given a time series of an irregular type
X ={x(¢)}, t=1,..,N. Let this time series have fractal
properties. Let we have obtained the set of qualitative and
quantitative characteristics K ={K;},i=1,....m of the
resulting recurrence and entropy analysis. Need to find out
whether the process of generating this series is chaotic
deterministic or random. For this is necessary to conduct a
comparative analysis of modelling time series of various
types and determine the set of characteristics K' — K for
which the differences are significant

2 REVIEW OF THE LITERATURE

Most methods of chaotic dynamics used for time series
analysis, based on the reconstruction space of single
realization using the procedure Packard-Takens [1-4]. The
reconstruction of the pseudo-phase space allows us to
compute the embedding dimension, which is the main means
of distinguishing chaotic and random processes [3, 5]. This
approach allows us to well distinguish between chaotic
dynamics and uncorrelated random noise, however, because
this method is based on the estimation of the fractal
dimension and detection autocorrelation relations, it hasno
effect for the fractal random processes having long
dependence [6, 7].

In [8] proposed a method that extends the capabilities of
nonlinear time series analysis, based on the fundamental
property of dissipative dynamical systems — recurrence
states. This method of analysis, based on the representation
of process properties in the form of geometric structures, is
a means for detection the hidden dependencies in the
observed processes [9—12]. The method of recurrence plots
is widely used for the analysis of stochastic time series of
different nature [6, 13—16]. One of the characteristics of the
complexity of the system behavior is entropy. Entropy
methods of time series analysis are also used a
reconstruction phase space [3, 7, 17, 18]. One of the
characteristics that demonstrate the complexity of the time
series dynamics is the approximate entropy of similarity
introduced in [7].

3 MATERIALS AND METHODS

Consider the basic features of the recurrence and entropy
analysis. The main idea of the application of nonlinear
dynamics methods to the analysis of the realizations of a
dynamical system is that the basic structure, which contains
all the information about the system, namely, an attractor of
a system, can be reconstructed by measuring only single
component of this system [1, 3, 19]. Reconstruction phase
space attractor is reduced to the construction of the pseudo-
phase space. Widelyused procedure Packard-Takens allows
to restore the phase trajectory of a dynamical system from
single realization:

F(@) =[x(¢), x(t +7),..., x(t + m7)]. )]

One of the most common methods used in practice to
determine the existence of chaotic determinacy and estimate
the fractal dimension of the attractor is to study the properties
of the correlation integral C,,(¢) and behavior of the
correlation dimension d- (m) depending on the dimension
m of the pseudo-phase space. The correlation integral
C,,(e) is a probability that a pair of points on the
reconstructed attractor in m-dimensional space is within a
distance of ¢ each other:

| I
C, ()= e gil})i,jz‘;l O~ - ;). )

Dependence the correlation integral on € at small €

obeys a power law, i.e. limC,, (¢) = ag’c. By increasing
£—0

the dimension of the pseudo-phase space m correlation

dimension d(m) increases too. However, for deterministic
chaotic time series correlation dimension will ultimately be

saturate with its true value. Value m at which d-(m) will
stop changing, is the embedding dimension. For uncorrelated
stochastic realizations embedding dimension increases with
the dimension of the pseudo-phase space m.

Recurrence plot is a projection of the m-dimensional
pseudo-phase space onto the plane [12, 14, 17]. Let point x;
corresponds to the phase trajectory x(¢) describing the
dynamic system in the m-dimensional space at a time ¢ =i,
fori =1, ..., N, then the recurrence plot RP is array of pixels,
where a nonzero element of the coordinates (i, )
corresponding to the case where the distance between x I
and x; is smaller &:

RE; =0O(e—||x;—x; ), x,x;€R",i,j=1..N. (3)

The states x; are recurrence if they are contained into
the m-dimensional neighborhood of point x; with size €.
Arbitrarily chosen recurrence point does not contain useful
information about the state of the system at time moments i
and j, only the totality of recurrence points allows you to
restore the system properties. Analysis of the plot topology
allows us to classify the observed processes: homogeneous
processes with independent random values, processes with
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slowly varying parameters, periodic or oscillating processes
corresponding to nonlinear systems, etc.

Numerical analysis of recurrence plots allows us to
calculate the measure of complexity structures of recurrence
plots, such as a measure of recurrence and determinism etc.
The measure of recurrence RR shows the density of
recurrence points:

1 N

RR=—>'RP_;. @)

Measure of determinism Der is a characteristic of
predictability process and equal to the ratio of the number of
points in diagonal lines to the total number of recurrence points:

N N
Det= 3 P (I)/ ) RP ;. ®)
1=l i,j

Aproximate entropy ApEn is the statistics of time series
regularity that defines the possibility of its forecasting. Time
series that contain a many of duplicate values, have a
relatively small value, and for less predictable process ApEn
value is larger. Methods of estimating the approximate
entropy ApEn considered in [7, 17].

Consider a time series {x(¢)}, ¢t = 1,..., N. Let the vector
P, (i) is subsequence values {x;,X;,{,..., X;;,, } length of m.
Two vectors B, (i) u B, () will be similar, if the following
condition:

|xi+k —Xj+k|<8, 0<k<m.
For each i =1,...,N —m+1 value C;,,(¢) is calculated:

Ny (€) ©)

Cl’m(g)z N—m+1.

Approximate entropy ApEn determined by the formula

—1n Cm(® ¥
ApEn(m,¢) lnCm+1(8)

N—-—m+1

Z Cim (8) .
i=1

1
where C,, (¢) Nemal

Consider the basic model types of data needed to conduct
research and their statistical properties. As input data have
been chosen realizations of deterministic chaotic systems
and realizations of stochastic processes having different
correlation structure: uncorrelated noise, autoregressive
processes with short-term dependence and fractal processes
with long-term memory.

Chaos is a complex dynamics of deterministic systems
in steady state. The main feature of such systems is
sensitive dependence to arbitrarily small changes in initial
conditions. If dj is the initial distance between two points,
then for short time ¢ later the distance between the
trajectories, which start from these points, becomes
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d@) = dOeM, where the value of A is the Lyapunov exponent.
This leads to the loss of deterministic predictability and the
need to introduce probabilistic characteristics to describe
the dynamics of chaotic systems.

Iterated maps x,,; = f(C,x,), where C is control
parameter, are the most simple and intuitive mathematical
chaotic models [1, 3]. For a wide class of nonlinear functions

f the sequence {x,, }n:O is chaotic. In the case of dissipative

map the orbits {xn }:lo:o lead to an attractor having a fractal

structure.
Logistic map is the most famous example of chaotic maps.
This one-dimensional quadratic map is defined as follows:

X, = Ax,(1-x,) A<(0.4] and x, €[0.1]; ®)

Diagram of the Lyapunov exponent ) is given in the
upper part of fig. 1. Chaotic dynamics (A > () is observed

when the parameter 4 > A" =3.569..... The regions of chaos
alternate with «windows of stability» in which the dynamics
becomes periodic. At the bottom of fig. 1 shows the time
realizations of logistic map for parameter values 4 = 3,7 and
A=3,9. The corresponding Lyapunov exponents are equal
A=0,37and L =0,5.

Autoregressive process of 1st order was chosen as
processes with short-term dependence [5]:

X(0)=9X (=D +E&@), ¢ <1 ©)

Autoregressive coefficient value ¢ characterizes the
degree of the autocorrelation process. Fig. 2 shows the
realizations of the autoregressive process of the different
values of coefficient ¢.

At present it has been generally accepted, that many
stochastic processes in nature and in engineering exhibit a
long-range dependence and fractal structure [20, 21]. Stochastic

process X (¢) is self-similar with self-similarity parameter H, if

the process ax (at ) is described by the same finite-
dimensional distributions that X (). One of the most famous
and simple models of stochastic dynamics that have fractal
properties, is the fractional Brownian motion (FBM).

Gaussian process X (¢) with a parameter H, 0< H <1
called FBM ifits increments AX (t) = X (¢ + 1) — X (¢) have
a distribution of the form:

1 B ?
P(AX <x)=—— | Exp| ————+ [dz. (10)
\/ZTCGO‘CH _'[ { ZGOZTZH}J

00

FBM with the parameter H =0,5 coincides with the
classical Brownian motion. Parameter H called the Hurst
exponent, is the degree of self-similarity. Along with this
property, the index characterizes the measure of long-term
dependence of a stochastic process, i.e. that autocorrelation

function r(k) decreases as a power law: r(k) ~ k_B, k — oo,

where 0<B<1 and H=1-(B/2). Fig. 3 shows the
realizations of the FBM for the values H=0.3, 0.5, 0.8.
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Figure 1 — Diagram of the Lyapunov exponent and realizations for logistic map: a — diagram of the Lyapunov exponent,
b — realization with A=3.7, ¢ — realization with A=3.9
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Figure 3 — FBM for different values H
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4 EXPERIMENTS

For carrying out numerical experiments investigated time
realizations X = {X;}, i =1,..., N, were generated according
to (8-10) for various N. It was first performed the
reconstruction of pseudo-phase space and estimation of
embedding dimension. For this procedure were used time
realizations of N =10000. Smaller length of time series
usually leads to large errors [1-3].

For carrying out entropy and recurrence analysis were
used time realizations of N =1000. This length is sufficient
for good visualization of recurrence plots and small errors
in the quantitative characteristics (about +0.005). For each
of the generated realization estimates of approximate
entropy and a number of the recurrent characteristics were
obtained. Estimation procedure was carried out for
realizations of every type processes M =100 times and each
estimate was averaged over the M values.

For clarity, we first considered the example of a
completely different process on complexity: a periodic
motion and uncorrelated white noise. For chaotic processes
the realizations with different values of Lyapunov exponents
were investigated. For autoregressive processes the
autoregressive coefficient value was changed. The
realizations of FBM were generated for different values of
the Hurst exponent.

After examining the results of the analysis the modeling
realizations the entropy and recurrence analysis of real time series
such as bioelectrical signals and financial series was performed.

5 RESULTS

Consider the reconstruction of pseudo-phase space and
estimation of embedding dimension. Fig. 4 shows the typical
dependence of the correlation dimension dc(m) on the
dimension m of pseudo-phase space constructed in
accordance with (1) for the realizations of an autoregressive
process, the logistic map and FBM.

The comparative entropy and recurrence analysis of
chaotic realizations and realizations of the stochastic
processes having different correlation structure was carried
out. Fig. 5 shows the recurrence plots for the sum of two
sinusoids and independent values of a normal random
variable. Table 1 shows the corresponding values of the
measures of recurrence RR, determinism Det and
approximate entropy ApEN.

Recurrence plots for realizations of map (8),
autoregression and FBM with different values of parameters
are presented on fig. 6. In the case of logistic map the
Lyapunov exponents are equal to A=0.37,0.5, 0.69 according
to parameter values.

Table 2 shows the means of recurrence RR, determinism
Det and approximate entropy ApPEn corresponding to the
plots above.

Table 1 — Quantitative characteristics of complexity of sinusoid
and uncorrelated noise

RR Det ApEn
Sinusoid 0.18 0.998 0.03
Uncorrelated noise | 0.0003 0.025 1.7

800

600 s

400

200

a

60|

400

200

00 41 00 800
b

Figure 5 — Recurrence plots for sinusoid and noise: a — sum of sinusoids; b — uncorrelated noise
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Figure 6 —Recurrence plots for under study realizations: a — logistic map with A=3.7, b —logistic map with A=3.9, ¢ — logistic map

with A=4, d — autoregression with ¢ = 0.3, e —autoregression with ¢ = 0.6, f — autoregression with ¢ = 0.9, j — FBM with H = 0.3,
h — FBM with H = 0.6, i — FBM with H = 0.9

Table 2 — Quantitative characteristics of complexity of realizations

Logistic map Autoregression FBM
A RR Det ApEn ¢ RR Det ApEn H RR Det ApEn
3.7 0.008 0.1 0.93 0.3 0.0003 0.03 1.72 0.3 0.02 0.55 0.47
3.9 0.004 0.07 1.2 0.6 0.0005 0.05 1.65 0.6 0.02 0.87 0.21
4 0.002 0.05 0.86 0.9 0.002 0.13 1.25 0.9 0.01 0.95 0.12

In this work the time series corresponding to a various
complex dynamical systems: bioelectrical signals and
financial series were considered. In particular, the RR-
intervals series were investigated. RR-interval is the time
interval between adjacent teeth of electrocardiogram and it
equals to the duration of the cardiac cycle. Initial data for

the research in this paper were obtained on a specialized
website [24] containing an extensive medical database. As
an example of financial series, the dynamics of change in
the currency pair EUR/RUB for 2004-2006 was examined.
Fig. 7 shows the time series and recurrence plots of data
described above.
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Quantitative recurrence and entropy characteristics
obtained from the time series are presented in Table 3.

6 DISCUSSION

Numerical analysis shows that the realizations of the
random and deterministic chaotic motion may have similar
statistical characteristics [3, 22, 23]. Reconstruction of
pseudo-phase space and estimations of embedding
dimension detected essential differences in the structure of
chaotic realizations and realizations autoregressive
processes with short-term dependence. However, the
embedding dimension, evaluated for the FBM realizations
with a long-term dependence, is also limited [6, 7]. The
estimation results presented in fig. 4 confirm that the
construction of the pseudo-phase space and the estimation
of embedding dimension cannot be a reliable tool for
distinguishing between chaotic and stochastic fractal
realizations and fitting of appropriate mathematical models.

Carried out recurrent analysis detected strong differences
in visual topology and the numerical characteristics of
realizations of the above processes. It is obvious that the
characteristics of chaotic and random processes must be
located within the range of characteristic values calculated
for the periodic and completely random trajectories, see fig.

Table 3 — Quantitative characteristics of complexity of time
series

RR Det ApEn
RR-intervals 0.05 0.61 1.07
EUR/RUB 0.08 0.85 0.17
1 =
X
0.9} | Il

.

]
=l
r —
—_
ma—
—
—%
'-ﬁ-'_..

i " _Pfé‘g;f:ﬁ-? .
300 iﬁ:;hﬁ%n{“ 5_

- penm e LT
200 L

5 and tab. 1. It can be noted for chaotic realizations that
greater value of Lyapunov exponent corresponds to a
greater randomness of the system, which is clearly evident
on recursive plots: the existence of some plot structure
replaced uniform filling (top of Fig. 6). In the case of
autoregressive process (middle Fig. 6) it is necessary to
note the lack of plot structure and uniform filling regardless
of the autocorrelation degree. The recurrent plots of FBM
have the specific structure, which depends on the Hurst
exponent value (bottom of Fig. 6). With the increasing
exponent A the range of values, i.e. plot filling, decreases.
As regards the quantitative characteristics, the research
has shown that the most informative recurrent
characteristics are the indexes of recurrence and
determinism. The values RR and Det are measure of
regularity, therefore in each case they decrease, when
randomness or uncorrelation of realizations increase. The
entropy ApEn is measure of unpredictability therefore it
increases with uncorrelation. Value ranges of characteristics
are quite different for various processes. This allows us to
identify the generating process by the set of characteristics.
Based on the results of qualitative and quantitative
analysis can be propose for modeling realizations RR-
intervals to use deterministic chaotic systems, while the
mathematical modeling of S&P500 series should be based
on self-similar stochastic processes. For a correct choice of
the model in the first case the estimation of such
characteristics as the Lyapunov exponent, invariant measure

300 400

Figure 7 — Recurrence plots of real time series: a — series of RR-intervals, b — series of EUR/RUB, ¢ — recurrence plots of RR-
intervals, d — recurrence plots of EUR/RUB
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distribution, etc. is necessary, and in the second case — the
estimation of fractal characteristics.

CONCLUSION

Using the results of the recurrent and entropy analysis
to distinguish deterministic chaotic and fractal random
processes was first proposed in this work. It is shown that
the set of characteristics such as indexes of recurrence and
determinism, approximate entropy and recurrence plot allows
to identify the type of process that generated the time series.
The dependences of information complexity measures of
time series from the parameters of the processes were
obtained. Thus it is possible to choose the mathematical
model of process has a certain correlation and recursive
structure for the simulation and forecasting. It is shown
that series of RR-intervals corresponds to a chaotic process
and S&P500 series has the structure corresponding to a
fractal Brownian motion. Further studies propose the
calculation of confidence intervals for estimates of the
characteristics, the analysis of the short time series and
investigation a large number of real time series a various
complex dynamical systems.
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[IPOTPECHBHI IHOOPMALIMHI TEXHOJIOI'TE

Kupuuenxo JI. O.!, Kobuikas 10. A2, Xabauesa A. 10.°

!I-p TexH. HayK, JOLEHT, Tpodeccop Kadeapsl NPUKIATHON MaTEMATHKH, XapbKOBCKUN HAIIMOHAILHBIA YHUBEPCUTET PaJUOdIIEKT-
pOHMKH, YKpauHa

2Acnupant Kadeaphbl MPUKIAJHON MareMaTHKi, XapbKOBCKMN HAIlMOHAILHBIN YHUBEPCHTET PaIUOIEKTPOHUKH, YKpauHa

SMaructpanT Kadeapsl MPUKIAJIHON MaTeMaTHKH, XapbKOBCKHN HAIIMOHAIBHBIA YHUBEPCUTET PAIUOIEKTPOHUKH, YKpauHa

CPABHUTEJBHBIN AHAJIN3 CJIOJKKHOCTU XAOTUUYECKHUX U CTOXACTUYECKUX BPEMEHHBIX PA1OB

TpeiokeH HOBBIM MOAXO0 K PACTIO3HABAHUIO MEXaHNU3MA MIPOLIECCA, ITOPOJUBIIErO BPEMEHHOMN psijl, 6a3UpyIONIUIics Ha pe3ysbTaTax
SHTPOMUHUHOrO U PEKYPPEHTHOrO aHanu3a. [IpoBeeH CPaBHHUTENLHBIN aHAIN3 CBOWCTB pealu3alliii Xa0THYECKHMX U CTOXACTUUECKHX
NPOLIECCOB, UMEIOIIMX PA3IMYHYI0 KOPPEISIUOHHYIO CTPYKTYpY. [10Ka3aHo, 4To MOSy4EeHHOE MHOKECTBO XapaKTEPUCTHK HH(OpMAIU-
OHHOM CJIOKHOCTH MO3BOJISIET PA3JIMYATh PEATU3AIUH I€TEPMUHUPOBAHHBIX XA0TUUECKHX U (PPAKTATLHBIX CIIyualHbIX mpoieccos. [Toy-
YEeHbI 3aBUCUMOCTH WH(POPMAIIMOHHBIX XaPAKTEPUCTUK OT MAPAMETPOB MPOLECCOB. [IpUBEIEHbI PE3YILTATHI HCCIIEA0BAHUS OHOJIEKTPHU-
YECKUX CUTHAIIOB M (PUHAHCOBBIX PSIOB.

KiiroueBble ¢j10Ba: BPEMEHHOM PsJi, MEpa CIIOXKHOCTH, SHTPONHS MOJ00Ms, PEKYPPEHTHAs JUarpamMmma, reeBao-hazoBoe mpocTpan-
CTBO, Pa3MEPHOCTh BIIOKEHHUS.

Kipiuenxko JI. O.!, Ko6unkas FO. O.2, Xa6auosa A. 10.}

'JI-p TexH. HayK, AOLEHT, mpodecop Kadexpu MPUKIAIHOI MATEMATHKH, XapKiBCbKU HAIIOHATBHUM YHIBEPCHTET PaliOeNeKTPOHI-
Kd, YKpaiHa

?AcmipanT Kadenpu NPUKIAIHOT MaTEMATHKH, XapKiBCbKUH HALiOHAIBHUN YHIBEPCUTET PaIiOeNeKTPOHIKH, YKpaiHa

*Marictpadt Kadeapu MPUKIaIHOI MAaTEeMATHKH, XapKiBCbKUH HAIIOHATBHUN YHIBEPCUTET PajlioeleKTPOHiKM, YKpaiHa

MOPIBHAJIbHUI AHAJII3 CKJIAJTHOCTI XAOTHYHHX TA CTOXACTUYHIX YACOBUX PSIJIIB

3anpornoHOBaHO HOBHMH IIXiJ 10 pO3Mi3HABaHHS MEXaHi3My IIPOILECY, L0 I'eHepye YacOBHH psifi, IKMH 0a3yeThCs Ha pe3yibTarax
SHTPOMIIHOTO 1 peKypeHTHOro anaiizy. IIpoBeieHO MOPIBHSUIBHUN aHAaNi3 BIACTHBOCTEH peairizaliil XaOTUYHHUX Ta CTOXaCTUYHHX IIPO-
LeCiB, 1[0 MAIOTh Pi3HY KopeJsiliifHy cTpykTypy. IlokasaHo, 10 oTprMaHa MHOXHHA XapaKTepUCTHK iH(QOpMaiifHOT CKIIaHOCTI J03BO-
JIsI€ PO3PI3HATH peanizalii 1eTepMiHOBaHMX XAaOTUYHMX 1 (paKTaIbHUX BHIAJKOBUX IporeciB. OTpHMaHO 3alIeXHOCTI iHpopMariitHux
XapaKTepUCTHK Bijl mapameTpiB npouecis. HaBeneHo pesyibraTy JOCITIKEHHs 010eJIeKTPUYHIX CUTHANIB 1 (QIHAHCOBUX PSMiB.

Kurouosi ciioBa: uacoBuii psit, Mipa CKJIa{HOCTI, HTPOIIisl HOAIOHOCTI, peKypeHTHa Jiarpama, ceB1o-(ha3oBHii IPOCTip, PO3MIPHICT
BKJIAJICHHSI.
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