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REVISED FAST FOURIER TRANSFORM

The problem of realisation of the Discrete Fourier Transform in on-line is analysed because of non-efficient consuming a time for a new
recalculation of spectrum samples if one discrete-time signal sample or even some small portion of samples in period are replaced by new
sample or by new samples, respectively. Using Fast Fourier Transform (FFT) procedure it is assumed that some signal samples in the respective
period available for processing digitally are updated by a sensor in real time. It is urgent for every new sample that emerges to have a new
spectrum. The ordinary recalculation of spectrum samples even with highly efficient Cooley-Tukey FFT algorithm is not suitable due to
speedy varying in time real process to be observed. The idea is that FFT procedure should not be recalculated with every new sample, it is needed
just to modify it when the new sample emerges and replaces the old one. We retrieve the recursive formulas for FFT algorithms that refer to
the spectrum samples modification. In a case of appearing one new sample, the recursive algorithm calculates a new spectrum samples by
simple addition of a residual between an old and new samples, multiplied on respective row of Fourier ‘code’ matrix, to a vector of old spectrum

samples. An example of 8-point FFT is presented.

Keywords: digital signal processing, discrete Fourier transform, fast Fourier transform.

NOMENCLATURE

DSP is a digital signal processing;

DFT is a discrete Fourier transform;

FFT fast Fourier transform;

{x(n)} is a discrete-time real valued signal or sequence
of real numbers;

L is a length of a real valued signal;

n is a number of signal sample;

X (w) is a Fourier transform of a discrete-time signal;

j is the imaginary unit;

® is an angular frequency;

X (k) is a spectrum sample;

k is a number of spectrum sample;

N is a general number of spectrum or signal samples;

kisisa periodic function with only A different values;
x,,4(D) is an old /-th sample of real valued signal;

x,,,(1) is a new I-th sample of real valued signal;

X ;K is an old k-th sample of spectrum;

X, (k) is a new k-th sample of spectrum.

INTRODUCTION

The continuous-time Fourier series are broadly used in
theory as well as in practice where functions are continuous.
DFT can be treated as its discrete-time counterpart. DFT
has also been implemented digitally in the area of filter
synthesis, image processing, various audio and video signal
developments, and many types of spectrum analyzers that
compute sampled power spectra and frequency response
functions. The properties of ordinary DFT are accurately
described. On the other hand, it is known that ordinary DFT
involves a lot of redundant calculations. Therefore, usually,
ordinary DFT algorithm is replaced by highly efficient
computer procedures, known as FFT algorithms. Also there
is a considerable amount of literature available on DFT and
FFT, mentioned here just a few (e.g. [1-9]) that are coupled
with DSP. However, some problems, encountered with FFT
applications to measured samples of signals, are not
generally understood [3], especially, analysing varying in
the time processes, e.g. if some portion of samples or even
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one sample in the given period is replaced by new samples
or one sample, respectively, and for each such real time case
we have to obtain a new spectrum. Therefore, it is needed to
modify DFT and FFT in order to recalculate only some
products of the Fourier ‘code matrix‘ with the respective
samples replaced. The next section introduces the statement
of the problem to be solved. In Section 3 we worked out the
recursive equations that allow to modify the ordinary FFT
procedure. Examples are presented in Section 4. Section 5
contains conclusions.

1 PROBLEM STATEMENT

Consider a discrete-time finite duration real-valued signal
{x(n)} oflength L (i.e., {x(n)} =0 for » <0 and > L) that
has the Fourier transform

L-1 _ -
X(w)= Y x(n)e '™ Voe0,2r, (1)
n=0

where the upper and lower indices in the summation reflect
the fact that {x(n)}=0 outside the range of 0 <n=0>L—1.
Here j is the imaginary unit. When we sample {X(w)} at

equally frequencies ®, =2nk/N VkeO0,N -1, with
N > L, the resultant samples are as follows:

X{(k)} = X(%j = Nilx(n)e— Jamkn/ N @

n=0

For convenience the upper index in the sum has been
increased from L —1to N —1since {x(n)} =0 for » > [ Here
N is the general number of samples of the basic real valued
signal {x(n)} under consideration. The relation in eq. (2) is
called DFT of {x(n)} and is used for transforming the sample
sequence {x(n)} into a sequence of frequency samples
X{(k)} oflength N. Rewriting eq. (2) in the form

N-1
X{(k)y =Y x(mwh Vke0,N—1, 3)
n=20
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Wl]‘\;’=e_j2nk"/N, “)

one can realize that the integer product kn repeats for

different combinations of k and 7, and that 4" is a periodic
function with only N different values. Therefore, various
fast and efficient DFT algorithms without redundant
calculations were worked out [1-9]. Frequently, the FFT is
computed by decimating the sample sequence {x(n)} into
sub-sequences until 2-point DFT’s remain.

Assume that the frequencies analysis of real-time
streaming sensor data {x(n)} is needed. The aim of the paper
is to work out an recursive approach that would update the
spectrum samples given in eq. (3) as fast as possible with a
sensor’s sample that emerges, without anew recalculation
of spectrum samples by FFT algorithm.

2 REVIEW OF THE LITERATURE

Recursive methods are important for the property that
observations of time-varying phenomenon by their use can
be processed by computer in real time. Hence, they may be
applied in on-line monitoring and analysis of generally time-
varying processes, and also combined with on-line control
strategies to produce adaptive control algorithms. Some of
them were used to the parametric identification of nonlinear
Wiener systems [10]. Recursive procedures can be effective
by processing various characteristics of stacionary as well
as nonstacionary random processes and systems [11].

It is well-known that the most important area of DSP
includes searching for different characteristics of signals
and systems in frequency domain. Here more popular are
DFT and various FFT procedures. However, as it is
emphasized in [3], that the use of the DFT with the digitized
signals are not generally understood. For example, ordinary
DFT requires that in the given period N all samples ought to
be fixed. Indeed, the author of this paper has not found any
published work that addresses the recursive calculation of
the DFT or FFT on an N-point complex valued function,
when the samples of the varying in the time signal are
observed by sensor. On the other hand, it is known that the
processes, functioning in real life are dynamic and time-
varying.

Therefore, it is important to work out procedures based
on ordinary DFT that allow us to find spectrum samples,
when some samples of discrete-time signal in the respective
period, available for processing digitally, are updated by a
sensor in real time.

3 MATERIALS AND METHODS

It is not efficient to recalculate the basic spectrum
samples anew, if only one signal sample or even a small
portion of new samples emerges continuously, especially,
when speed is a main issue. Then, the computation time can
become prohibitive, in spite of the fact that FFT requires
only Nlog2 Ncomplex multiplications and complex

additions to compute each of the N spectral samples. In
such a case, it is important to work out an approach for
modifying FFT in order to decrease the calculation time
significantly. Let us retrieve now recursive formulas for

recalculating the basic spectrum samples X (k)Vk € 0, N —1

partly, when a new sample X, (/) appears in the given N

new

samples of a signal x(n) Vn e 0, N —1 while the respective

old one vanishes. For real valued x(n) Vne0,N —1 eq.(3)
can be rewritten as

2tk Nt
Xold (k) = Xold (Tj = Z xold (}’l) WII{\;’ ’ (5)
n=0

or

27tk Nt
Xnew (k) = Xnew(_j = Z xnew(n) W]ﬁ ’ 6)
N n=20

if only the old and new samples of the sequence {x(n)} are
used, respectively. Here X ,,(/), x,, (OVIc0,N-1 are
I-th old and new samples, X ,,(k), X (k) Vke0 N-1
are values of the old and new samples in frequency domain,
correspondingly.

Suppose now that in eq. (6) all the new samples are
equivalent to the old ones, except, the sample x (1). Then,
we can rewrite eq. (6) as follows

-1
X = Yx mwk+x (Owk+

new

n=20
N-1
+ X x,(mwh vYkeo,N-1.
n=1+1
Subtracting the values X (k) from X, )
Vke0,N —1 we obtain the relationship of the form
Xnew (O) - Xald (O) W118
Xnew (1) - Xold (1) lei/'

: = ['xnew (Z) — Xold (Z)] N
Xnew(N - 2) - Xold (N - 2) W%N_z)
XWW(N—I)—Xold(N—l) WIA(/N—l)

It can also be rewritten in the recursive form
Xnew (0) Xo/d (0) Wl]\(/)
Xnew (1) Xald (1) Wll\ll
: = H e (D) =%, (D] * ()
Xnew(N - 2) Xald (N - 2) W%Niz)
Xnew(N - 1) Xo/d (N - 1) W%N_l)

assuming that a new sample x (/) emerges and replaces
the old one x y ).

Suppose now that in eq. (6) all the new samples are equivalent
to the old ones, except a some portion of new samples
x D,x (+D,...x (+p=-2),x (I+p-1), that
appears in the given N samples of signal {x(7)}, while the
respective portion of the old samples vanishes. In such a case,
the final expression can be rewritten recursively

X ()= Xy () + S [y (m) = Xy ()W Yk €O N 1,

m=l
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or in extended form

new(0) X a0

newD) X @

: =l : [ % () —

X, (N-2)| | X, (N-2)
X (V=D | X, (V=D

(] (e |

wh wy!
X (D] ot [0 (0) =50 (V)] - ®

W]]\sN—Z) W%(N_Z)
W%N—l) W%(N—l)

Here v=1[+p—1.
4 EXPERIMENTS

Let us describe now two experiments that are carried out
while analysis of recursive FFT. In both experiments we
consider the discrete-time periodic signal

x(n) ={...24,8,12,16,20, 6,10, 14,...}. )

By inspection, the period N =8. DFT is computed
according to

7 o _
X(k)= Y x(n)exp(—j—nk),Vke0,7 . (10
n=0 8
or in a form

[x©o)] [1 1 1 1 1 1 1 1 (247

XM | |1 a=)) —-j  bA+)) -1 b(d=j) j a(+)) 8

x| 1 -; -1 j 1 -j -l J 12

XGQ) ||V b(+)) j  a(-=)) -1 al+j) -j b(d-)) 16 11

X@| |1 -1 1 -1 1 -1 1 -1 20’( )

XG) | |1 b(=j) —=j al+)) -1 al-j) j b(+)) 6

x©| (1 ;-1 - 1 VA 10

LX(D] [1 al+)) j b(l-j) -1 b(+)) —j al-j) [|[14]

using Fourier ‘code’ matrix. Here @=0.7071 and b = —a.
Afterwards, the spectrum samples X (0), X (1),..., X(7) are
determined by FFT using Matlab as follows: ffi([24, 8, 12,
16, 20, 6, 10, 14], 8). The spectrum samples are: X (0)=110,
X()=4 — 483, X(2)=22 + 16/, X(3)=4 — 0.83],

X(4)=22, X(5)=4+0.83}, X(6)=22 — 16/, X (7)=4+4.83).

In the first experiment we change in (11), firstly, fourth
sample, and, secondly, the sixth one. Suppose that a new
fourth sample ‘25” comes in (9), and the old one ‘20’ goes
out. Then, the system of linear complex valued equations
(10) is of the form

X, O] - S
new 1 1 1 1 1 1 1 1 24
X"w(l) 1 1-5) -J b(1+j) -1 b(l-j i 1+ 8
a(l-j) -j 1+ /) (-5 j al+))

Y@ 1 = 1 j S A B 12
KO |_[U 0+ j al=)) =1 al+)) —j bA=j) |[16
X, @ 1 -1 1 -1 1 -1 1 -1 25|
WO L b= —j ey -1 al=j) b)) 6

X, (6 1 j -1 - 1 S 10
x | atep j ba=j) -t b)) —j al=j)  J[14]
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Afterwards, the
X ,0,X (OD,..,X  (7) are recalculated anew by
Matlab: ff#([24, 8, 12, 16, 25, 6, 10, 14], 8). Their values now

are: X (0)=115, &, (D=-1-483, X (2)=27+16j,
X B=-1-083 X, #H=27 X, (5=-1+083,
X, (0)=27-16j, X, (7)=—-1+4.83j. The same spectrum

0, X, @,...X  (7) can be determined
recursively by eq. (7) as follows

spectrum samples

samples X

new new

_ o

new (

[110+(5)-1 1 [115
Yo | a_a83j+5)1)| |-1-483
X w2 22416, +(5)-1 27416/
X0 @) | [4-083j+(5)(-1)| |-1-0.83;
X @ [2+6)1 =157 :
()| 410837 +(5) (=1 | |-1+083)
GIRERUACOR 27-16
44483j4(5)-(-1)] [-1+4.83;)

_Xnew (7)_

It is obvious, that in both cases we obtain the same set
values of X (0), X(1),..., X (7), respectively. Suppose now that
just after finishing recursive calculations the new sixth sample
with values ‘5’ come in the set of samples (9) and the respective
old one with values ‘10” go out. Then, the previous values of
X (0),X (1),...,X (7)can be treated now as old ones,

ie. X ,0=Xx_(0,X O=X_@®O,..X, (6=
=X, 0),X (1)=X  (7)respectively. The current values
of X(0), X(),...,X(7) are treated as
X, ,,0),X (1),..,X (7). They can be obtained by the
recursive formula

new

| new(o)_ B T B 7
115+(=5) 1 110
X . . .
new —1-4.83j+(=5)-j ~1-9.83
X e @ 27416/ +(=5)-(=1) | |32+16;
X | | -1-083+(=5)-(=)) | |-1+4.17,
X, @ |27+(=5)-1 22 '
5)| |-1+083/+(=5)- —1-4.17/
X_© 2716 +(=5)-(=1) 32-16;
) | —1+4.83+(=5)-(=j) | [-1+9.83/]

Let us check now the previous recursive FFT by the
ordinary one using Matlab: fft([24, 8, 12, 16, 20, 6, 5, 14], 8).
The spectrum samples are:

X(0)=110, X(1)=—1-9.83j, X(2)=32+16j,
X(3)=—1+4.17j, X(4)=22, X(5)=—1-4.17j,
X(6)=32-16j, X(7)=-1+9.83;. (12)
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It is assumed in the second experiment that both samples
in (9) emerge at the same time. They appear just after
calculations performed with initial set of samples (9). The
new fourth and sixth samples with values ‘25’ and ‘5’ come
in (9) and the respective old ones with values ‘20” and ‘10’
go out. Then, eq. (11) obtains the form

[x©)] 1 1 1 1 1 1 1 24
X(1) 1 oa(l-j) —-j b(+j) -1 b(-j) j a(l+)) 8
x| [t -j -1 j 1 - -1 12
X@| |1 s+ oal-p) -1 al+)) —j b)) 16
xX@| |1 -1 1 -1 1 -1 1 -1 250
XS | |1 A=) —=j al+j) -1 al-j) j b(1+)) 6
xe©| [t -1 — 1 S 5
LX) (1 al+)) Jj b(l-j) -1 b(+)) —j al-j)  J[14]

According eq. (8) recursive 8-point FFT expression is

Koo (©) [110+(5)- 1+ (=5)-1 1 T110 1

YooV |1 4-483/45)- (<D +(-5)) 1-083

Koow @) 22416/ +(5)-1+(=5)-(-1) 32+16;

X3 | [4-083+(5)-(-D+(=5)-(=))| |-1+4.17/

X, @) - 22+(5)-1+(=5)-1 |22 - (13)
o3| 410837 +05) =D+ (=5)-j —1-4.17j

X, (6] |2716/+(3)1+(=5)-(=D 32-16

x| [4+483/+0) D+ | [-1+9.83)]

L* new

Thus, the results (13) given by the recursive FFT of the
form (7) are coincident with the results (12) that are obtained
by ordinary FFT using Matlab standard function ff¢. Let us
analyse now the recursive FFT using the special form

6 +wH(©)
X GO)+WeH(1
X() M +WgH()
x@2)| |GO+WSH?2)
X3 | |GR+WHE)
XH | | G0)-wdH(©0)
X(5) 1
G()—WiH(1
X(6) ) 82 Q)
x(7)| |COTRH®
| GB) =W H(3)

of ordinary FFT for the given period N. Here

3 3
G(k)= Y, xQ@mW/[" H(k)= Y xQ2n+)W,"
n=0 n=0
Vk=0,1,2,3.

Suppose that a new fourth sample ‘25” comes in the set,
given by the initial eq. (9), and the old sample ‘20’ goes out.
At the same moment, every value of G(k) Vk e 0,3 changes,
while corresponding value of H(k) Vk eO_,3 remains the
same. Then, one can obtain

_G(O) +(5)-1+ W H(0)

X, (0) (X,O] . -
X | [COrE-Eh O | !
X, @| | COOIHO | |y o) |
X, 0@ | |GO+E)-(D+WHO) | | X,,() R
Koo ® || G(0)+(5)-1-WH(0) Xora® 1
X 03 6+ (5D W HQ) X, -1
X .0 § X,,(6) 1
X | |GQrO1WH) | x ] T

|GR)+(5)-(-D=WSHE) |

This relationship is coincident with the formula (7), too.

5 RESULTS

It follows from the 8-point DFT example with real-valued
samples set (9), that recursive FFT on an 8-point complex valued
function, requires 8 operations (here operation is defined as
one complex valued multiplication plus an one complex valued
addition [3]) if one new sample comes in, and twice more both
operations, if a portion of two samples emerges.

6 DISCUSSION

Thus, N-point DFT requires N complex-valued operations if
one new sample emerges in a period, and 2N operations if a portion
of two samples goes in, respectively. On the other hand, direct
computation of the DFT on an N-point complex valued function
requires NI operations to recalculate all N spectrum samples.
Calculations increase even four times if twice increases the general
number of samples to be processed. The Cooley-Tukey algorithm,
that belongs to the class of FFT algorithms, takes approximately
Nlog2 N operations [12, 13]. It is known [4], that for small values
of N (say, 32 to 128) the FFT is important. For large values of N
(1024 and above), the FFT is incredibly more efficient. For example,
FFT is even hundred times faster than DFT, when N = 1024.
Nevertheless, recalculation of spectrum samples by FFT is not
only nonracional but also nonefficient if one sample emerges
replacing an old one. In such a case, recursive calculation by (7) is
much more effective. In order to change old spectrum samples the
recursive FFT requires only 1024 operations on an 1024-point
complex valued function, while the ordinary FFT requires 10 times
more by anew their recalculation.

CONCLUSIONS

For discrete-time signals the DFT coefficient values have
been proposed to recursively determine if one new signal
sample or new portion of samples emerge in the given period
of a realization replacing the old sample or old portion of
samples, respectively. The number of operations for their
speedy calculating is essentially reduced by the original
recursive expression in comparison with the ordinary DFT
or FFT equations (2), (3), respectively, used in the case of
fixed values of samples x(n) Vn e 0,N —1 in a fixed period
N. An example, presented here, has shown us the efficiency
of the recursive approach, too. Therefore, it is not rational
to recalculate frequency samples by ordinary DFT or even
FFT algorithms if only one sample in the given period or if
some small portion of samples is replaced by new sample or
some new samples, respectively. The recursive FFT approach
could be effective, especially, in real-time applications when
speed of calculations is the main issue.
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Ilyneiixuc P.

Kanx. TexH. HayK, JOLEHT, CTApPLINI COTPYIHUK OTJeNa IPOLEeCcCOB paclo3HaBaHUs, BunpHiocckuil yHuBepcureT, Bunbnioc, JIutsa

HUCHPABJIEHHOE BBICTPOE NPEOBPASOBAHUE ®YPbBE

ITpobnema peanu3anuu JUCKPETHOrO mpeobpasoBanus Dypse B pexxuMe OH-TalH aHAIH3UPYeTCs U3-3a Hed(DPEKTHUBHBIX 3aTpaT BPEMEHH I
HOBOTO IlepecueTa OTCUETOB CIEKTPa, €CIM OTCYeT OJHOrO CHTHAla ¢ JAUCKPETHBIM BPEMEHEM HIH Ja)ke HeOOIbIIas 4acTb OTCUETOB B NEPHOIE
3aMEHEHbl Ha HOBBII OTCUET MM HOBBIE OTCUETHI, COOTBETCTBEHHO. Vcmonp3oBanue mpouenypsl 6sicTporo mpeodpasoBanus Oypse (BIID)
IIPE/IIONAaraeT, YT0 HEKOTOpble OTCUETHl CUTHAJa B COOTBETCTBYIOLIEM IIEPHOJE, JOCTYIHBIEC MUl HU(POBOH 00pabOTKH, OOHOBISIOTCS C OMOIIBIO
JaTYUKa B PEXKHME PEaIbHOTO BPEeMEHH. DTO aKTyalbHO U Ka)JOro HOBOTO OTCUETa, KOTOPHII IPUBOAUT K MOITYyYEHHIO HOBOTO CIIEKTpa.
OOBIYHBIH TIepecyeT OTCUETOB CIIEKTpa Jaxe ¢ BBHICOKOd((eKTUBHEIM anroputMoM BII® Kymu-Teioku He MOIXOOHT HM3-32 OBICTPO U3MEHSIONIEroCs
BO BpEeMEHH HaOJII0NaeMOro peanbHOro mpomnecca. ges 3akmodaercs B ToM, 4To mpouexypa BII® He momkHa HepecdHTHIBATHCS € KaXKIBIM HOBBIM
OTCYETOM, Hy>KHO IIPOCTO MOAU(HIINPOBATH €T0, KOIZa HOBHI OTCUET MOSBISLETCS M 3aMeHseT crapblil. IlomydeHsl pekyppeHTHbIe (HOpMyIbl I
anroputMoB BII®, xoTopble OTHOCATCS K MOAM(HKAIUN OTCUETOB CIEKTpa. B ciaydae BOZHHKHOBEHHS OJHOTO HOBOTO OTCUETA, PEKYPCHBHBIM
AJITOPUTM BEIYHCISICT HOBBIC OTCUETHI CIIEKTPa MPOCTHIM J[00ABJICHHEM K BEKTOPY CTapbIX OTCUETOB CIIEKTPAa Pa3HOCTH MEX/IY CTapbIMH M HOBBIMH
OTCYeTaMHU, YMHOKEHHOW Ha COOTBETCTBYIOIIMH psii MaTpuubl «koma» PDypswe. [IpuBenen npumep 8-roueunoro BIID.

Karwueblie ciaoBa: nudposas o0paboTka CHTHANOB, JUCKpeTHOe mpeobpasoBanue Pypoe, OpicTpoe mpeobpazoBanue Dypse.

Myneiikic P.

Kanz. TexH. Hayk, JOLEHT, CTapIIUii criBpOOITHUK BNy mpoueciB po3nisHaBaHHS, BiibHIOCEKHH yHiBepcuteT, BinbHioc, JIuTBa

BUITPABJIEHE IBUJKE NNEPETBOPEHHS ®YP’€

IIpobaema peamnizanii quckpeTHOro mneperBopeHHs Pyp’e B pekuMi OH-NAiH aHaNIi3yeThCsl 4epe3 Hee(eKTUBHI BUTPATH 4Yacy I HOBOTO
nepepaxyHKy BIATIKIB CHEKTpY, SKIIO BiJUIiK OJHOrO CHTHAy 3 JUCKPETHHM 4YacoM abo HaBiTh HEBEJIMKA YacTHHA BIIIKIB B mepiofi 3aMiHeHi Ha
HOBHMH BiJulik a00 HOBI BiMJIIKH, BiNNMOBigHO. Bukopucranus npouenypu msuakoro nepersopenns ®yp’e (IUIID) npunyckae, mo neski BiATKa
CUTHAJly Y BiAMOBIZHOMY mepioai, 1ocTymHi s uudpoBoi 00poOKH, OHOBJIIOIOTHCS 32 JOMOMOTOK0 JaTYMKa B PEKUMI peanbHOro yacy. Lle
aKTyaJIbHO IJISI KOXKHOTO HOBOTO BiNJIKy, SKHH HPU3BOAUTH IO OTPUMAHHS HOBOIO CIHEKTpa. 3BHYaHHHUI IepepaXyHOK BiMTIKiB CIIEKTPY HaBiTh
3 BHcokoehekTHBHUM anroputMoM LITI® Kymi-Teroku He MiZXOAMTH Yepe3 IIBHIKO MIiHIMBOTO y 9aci CIOCTEPEKYBAaHOTO PEaIbHOTO IIPOIECy.
Inest momsArae B ToMy, mo npouexypa LIIP He moBuHHA IepepaxoByBaTHCS 3 KOKHMM HOBHM BiITiKoM, MOTPiOHO mpocTo Momu(iKyBaTH Horo,
KOJIM HOBHH BIiMJIK 3’SBIs€ThCA i 3aMiHIOE cTapuii. OTpuMaHo pekypeHTHi Gopmynu ans anroputMmiB LIIID, ski BigHOCATHCS N0 Moaudikamii
BIIUTIKIB criekTpy. Y pa3i BUHMKHEHHS OJTHOTO HOBOTO BIIJIIKY, PEKYPCUBHHI aJrOPUTM OOYHMCIIOE€ HOBI BiJUIIKM CHEKTPY MPOCTUM JONABaHHIM
J10 BEKTOpa CTapuX BIAJIKIB CIEKTPY Pi3HHII MK CTapUMH i HOBUMH BiJUliKaMH, TOMHOXXEHOT Ha BiAMOBIIHUN P MaTpuli «koay» Dyp’e.
Hageneno mpukiian 8-rouxosoro IITID.

Kuarouosi cioBa: nudpoa o6podka curHamis, AuckperHe neperBopeHHs Dyp’e, mBuake nepersopeHus dyp’e.
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