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IMAGE CONTOUR SEGMENTATION IN HARDWARE

The use of Behavioural Synthesis for hardware generation of a contour-based image segmentation method is considered. The segmen-
tation method chosen, is a well-known, state-of-the-art, robust, efficient and fast-converging one, that combines functionals depending on
the curve geometry and image properties in a level-set framework. The cost function sought to be minimized, is formulated as a weighted
sum of three integral measures; a robust alignment term that leads the evolving surface to the edges of the desired object, a minimal variance
term that measures the homogeneity inside and outside the object, and a geodesic active surface term that is used mainly for regularization.
The algorithm is initially implemented in MatLab and ADA and subsequently, it is ported to our Behavioural Synthesis tool, the CCC HLS
framework, which is capable of delivering correct-by-construction RTL VHDL implementations of computation-intensive applications.
This way, behavioural ADA specifications are transformed into RTL micro-architectures which then can be easily implemented by commer-

cial RTL synthesizers.
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NOMENCLATURE

CCC Custom Coprocessors Compilation;

HLS High Level Synthesis;

RTL Register Transfer Level,

ITF Intermediate Tables Format;

PARCS Parallel Abstract Resource — Constrained
Scheduling.

INTRODUCTION

Lately, there has been a substantial progress in partial
differential equations and variational approaches in various
colour image processing tasks. Among the associated
computer vision application, one may typically find on one
hand; applications aiming to remodel (in the PDE/Variational
framework) more traditional tasks or on the other hand some
emerging applications [1]:

— Image restoration, which is historically considered to
be one of the oldest aims. Moreover, improving the quality
of the image is quite frequently, one of the first, necessary
preprocessing steps taken.

— Image segmentation, one of the most important steps
in image analysis, with its own well established theoretical
objectives and methodologies.
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— Image and video inpainting, used for restoration of
photograph cracks or errors due to image transmission and
image compression and coding applications.

— Image decomposition, into a sum of a geometric part
and an oscillating patterns (texture) part, used mainly in
image compression.

— Image classification, where variational models are
introduced in the place of more well-studied approaches
such as region growing and stochastic (mainly Markov
Random Field) based ones.

Accurate segmentation of various types of imagery, is a
well-studied, non-trivial, image and application dependent
task, which is however an essential step towards higher
level image understanding. It combines the early vision pre-
processing stages where salient features are highlighted
while others suppressed, and allows us to move to a more
effective scene analysis stage. Applications of image
segmentation can be found in a broad range of disciplines;
from medical diagnostic applications and inspection of
manufactured products to military, security and automotive
industry applications; traffic control systems and video
surveillance to face, fingerprint and iris recognition to name
a few.
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Generally speaking, image segmentation techniques can
be either region-based or edge-based, which take into
consideration the basic concepts of similarity and
discontinuity respectively. In many cases, segmentation is
formulated as an optimization problem where a set of
unknown parameters have to be estimated. With the level-
set approach the problem is posed as that of tracking a
moving interface. Curve and surface evolution can be
computed without having to parameterize the objects
(Eulerian rather than Lagrangian approach) which can
undergo complex topological deformations such as merging,
splitting and developing holes.

The aim of this work is to present the implementation of
a computationally demanding, image contour segmentation
algorithm in hardware. In essence, the algorithm has to be
discretized so that it can be efficiently ported to our CCC
HLS framework and thereby serve as a paradigm for future
implementations. Section I gives a brief problem statement.

Section II reviews related work. Section III outlines the
theory of geometric active contours and Section IV presents
the experimental results. Section V stresses the relation of
verification and synthesis flows for our experiments and
the last section discusses and concludes our work.

1 PROBLEM STATEMENT

The method’s input data as discussed also in later
sections are: the grayscale image /, the initial contour Pinitial,
the three weighting coefficients (w,, w,, w,) for the
respective contributing terms in the optimization scheme,
the time step 1, and the loop termination criteria; delta for
convergence and iter for the maximum number of iterations.
The method’s output is the final contour, @,

2 LITERATURE REVIEW

The desired properties of a good image segmentation
method, as defined in [2], are that it produces homogeneous,
in a sense, regions, with a simple hole-less interior, clearly
distinct from their adjacent regions, having accurate and
simple borders. There are mainly two broad segmentation
strategies which can be seen as being one the «dual» of the
other: The first one mainly exploits the notion of
homogeneity in regions, separated by sharp boundaries, to
identify meaningful objects. A well-known representative
method of the first approach is the seminal work by Mumford
and Shah [3]. In this paper, we concentrate on the second
approach which aims to segment an image by detecting the
contours of the different image objects. This is actually an
edge detection method, with the main principle of matching
deformable curves to the contour objects by means of a
suitable energy functional minimization. As examined below,
various improvements have been suggested over the years
to the original model leading to geodesic active contours
and the level sets method.

Usually, edge detection requires differentiation to detect
gray-level changes and smoothing, for noise reduction of
the image. The most common method of (first-order)
differentiation is the gradient, while on the other hand,
smoothing typically involves filtering with a 2D Gaussian.

Quite frequently, the combined smoothing and
differentiation of the image is implemented by filtering the
image with the differentiated smoothing filter, as in [4] for
example, where edges are defined as the zero crossing curves
of the Laplacian of Gaussian (LoG) applied to the image.

Active contour models, (or deformable models) which are
defined as energy-minimizing splines, with energy local minima
corresponding to the desired image characteristics, started with
the classical snakes [5], followed by non-variational geometric
active contours [6—7] and geodesic active contours [8].

3 GEOMETRIC ACTIVE CONTOURS

In two dimensions, a simple curve defines the object
boundaries. A given initial curve can evolve according to
its geometry and the information in the image. The evolution
is a result of minimizing an energy functional —a cost function
— which is influenced by image information along the curve
and the intrinsic geometry of the curve. Minimization of
such a measure leads to a curve that should coincide with
the boundary of the object. The first variation of the
functional is used to evolve a given curve toward a
significant local minimum of the functional, by applying a
gradient descent flow.

A more recent method [9], examined geometric functionals
that do not depend on the internal parameterization of the
curve, but rather on its geometry and the image properties
(geometric active contours). A weighted sum of three integral
measures is used, a robust alignment term that leads the
evolving surface to the edges of the desired object, a minimal
variance term that measures the homogeneity inside and
outside the object, and a geodesic active surface term that is
used mainly for regularization. The method has also been
used for segmentation of thin structures in volumetric medical
images [10], where the respective weights were modified for
different types of images (brain CTA, lung CT, MRI etc.).

The first functional considered is the Robust Alignment
Term:

E4r(©) = [ [(VIGt), pspmisl)ds, )

where the inner product gets high values if the curve normal
n aligns with the image gradient direction, therefore we seek
to maximize it.

The second functional is based on the Robust Minimal
Variance criterion (proposed in [11]) which is given by:

Epay (€)= [[ qelI(x,3) — et|dxdy + [ oy I(x,y>—c2\dxdy, @)

where ¢ and ¢, are the mean intensities inside and outside
the contour respectively and in the optimal case we look for
the best separating contour. The term is of high importance
in noisy images.

Finally, the Geodesic Active Contour functional which
is sought to be minimized (as it is an inverse edge indicator)
is given by:

Egac(C) = [} a(Cs))s. ©)

This regularization term can be particularly useful in order
to control the other two contributing terms (robust alignment
and minimal variance).

Now, computing the first variations for each of the
previous functionals, the optimization problem is posed as:

argmaxc, ., E(C,cy,¢3), “4)

where the combined functional is given below and o, P are
positive weighting constants, chosen empirically depending
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on the image, with ¢ usually much smaller than . A
suggested rule of thumb for determining the best
coefficients is that, when the image has a large amount of
noise, B should be large, else it should be small. Moreover,

when the variance of gray scales inside the object is large,
should be small:

E(C,c1,00) = EAR(C,c1,02) —0EG4c(C)=BEyy (C) , (5)

which has the following Osher-Sethian [12] level-set
formulation:

sign(<V(p, V1>)A1+owliv(g(x,y)‘§—a+ | |
¢ = Vo . 6)
Bles—c )<1—CI+TCZ>

The above formulation is shown in [9] to be solved
numerically using a locally one-dimensional, fully implicit
scheme:

-1
" = H/%:l (I-tad;) (" +m(e",VI), ()

where I is the identity matrix and the elements of the
operators A1 and A2 are (M is the distance between
neighbouring pixels):

gitg;

. if jeN(D);
o; =1 20
v gitg; .. .. ®)
> U J=Ln
2keN() 212 2
0, else,

and the function M is:

(e, V1) = sign((Vo,VI )AL +B(cy — ¢y )(1 —C“Tczj ©)

4 EXPERIMENTS

In this work, we expand on results that were reported
earlier in [13]. This contour-based method, has been shown
to be quite accurate and fast converging, in fact in all of the
images that we have experimented with, a total number of 10
iterations is sufficient for convergence, i.e. increasing the
number of iterations has no effect on the final segmented
mask. Fig. 1 depicts the contours for each one of the first
nine iterations, superimposed on the original image («mri»).

Specifically, in this section we present our experimental
results and the qualitative comparison of the three
implemented algorithms; the original MatLab version, a
«flaty version of the original method in MatLab again and
the GNU ADA «flat» version which is the input to our CCC
HLS tools (Fig. 2).

In building up our framework towards an efficient
hardware representation of the method, we re-implemented
the algorithm in MatLab (constructing a «flat» version of
the original method, i.e. with no function calls, for hardware
implementation efficiency), using 32-bit wide integers only
(to avoid overflowing), leaving all MatLab parallel
constructs out (and merging loops where applicable),
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Figure 1 — Contours for the first nine iterations

“Flat” MatLab method

|

“Flat” GNU ADA method

=

Original MatLab method

CCC HLS Tools

=

Figure 2 — The experimental framework

approximating square roots with the shifting n-th root
algorithm and scaling (X100) some constants to avoid using
any floats. Additionally, the time step t was set to 1 rather
than 0.5 and the well-studied example of G(x, y)=1 was used
as the inverse edge indicator. This lead to a great amount of
simplifications in computation, essential if the algorithm is
to be implemented in hardware. The results were compared
with the results obtained by the original method and were
found of equivalent quality.

Fig. 3 depicts results for the «football» image with the
original MatLab method. Simpler case images, such as those
with no noise, uniform background and no illumination have
been considered as well (as in [13]) but the main sequence
tested extensively has been «football», a rather challenging
one. The final contour is superimposed on the input image
frame and the originally suggested parameters were left
intact:

—wl=0.01 (weight for the geodesic active contour term);

— w2=4.0 (weight for the alignment forces term);

—w3=5.0 (weight for the minimal variance term);

— t=0.5 (the time step);

— iter=30 (maximum number of iterations);

— delta=0.0001 (the convergence criterion threshold).

A segmented mask can be constructed by means of the
final contour array elements’ signs image. Note that no
optimization on the contributing terms’ weights has been
exercised in this example.
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Figure 3 — Original MatLab method results

Fig. 4 displays the results with the «flaty version of the
original method in MatLab with the final contour appearing
in red and parameter values set to: wl=1, w2=400, w3=500,
t =1, iter=10 and delta=1.

The method reads the required grayscale or binary
images (initial contour and input images) and any required
weights and constants. Images are read and written in .ppm
format (portable pixel maps), which makes colour image
processing also feasible. An outline of the algorithm steps
is following:

— read input image (/) and initial contour (Q) arrays;

— initialize some essential parameters, namely the three
functional weights and the maximum number of iterations
and the convergence threshold which are used as possible
termination criteria;

— pre-compute first and second order derivative arrays;

— start the main while loop which tests for either
convergence (using the L2 norm) or exceeding the maximum
number of iterations — on each loop iteration do:

a) set the previous contour to be the current contour;

b) compute the minimal variance term (Fig. 5);

¢) compute the robust alignment term using the derivative
images (Fig. 6);

d) compute the new contour array by combining the
three functional terms (Fig. 6);

e) implement the main numerical formulation scheme
(previous implicit function) which utilizes Thomas algorithm
(simplified significantly with the previous assumptions) for
inverting the tri-diagonal operators A1 and A42;

f) set ® as a distance map of its zero set (previous
redistance function) and compute the new contour array
using fast-marching (previous update function);

g) check for convergence and increment iteration counter;

— end the main while loop.

Subsequently, the algorithm was implemented in GNU
ADA and a comparison of the results showed equivalence
in quality once more (Fig. 6). At this stage, we had to deal
with some additional incompatibilities with respect to integer
arithmetic, as MatLab rounds towards positive and negative
infinities, whereas GNU ADA (GNAT Programming Studio)
truncates towards zero.

Figure 4 — «Flat» method MatLab results

—-and compuce Threshold (LLoydMax)

for i in 1..HEIGHT loop
for j in 1..WIDTH loop
o0ldCout (i} {j) := Cout (i) (J
templ := Cout(i) {J)

if templ < 0 then A1(i) (j --create A1 := mask_in
else RA1(i} (] i
end if
A2{i) (] 1 — A1) (3 --create A2 := mask out
end loop
end loop
templ := [ —-to create mask in (Al) sum
temp2 3= 0; —to er mazk_out (A2) sum
temp3 = 0 o eate mask in*I sum
tempd = O —--to create mask out*I sum
for i in 1..HEIGHT loop
for j in 1..WIDTH loop

templ := templ + Al(3) (]
temp? temp2 + AZ (i) (]
temp := Alii) (3) * Iinii) (3
Temp3 = Temp3 + Cemp:
temp = A2(1i) (3) * Iin{i) (3)
temp4 = temp4 + Cemp
end loop
end loop
templ := temp3 templ
temp? = tempd temp2
temp3 := (templ + temp2 2
tempd = temp2 - templ
for i in 1..HEIGHT loop
for j in 1..WIDTH loop
templ := Iin(i} {j} - temp3
Threshold(i) (j) = tempd +
end loop:

templ; ——force:=temp4d.* (I-temp3)

Figure 5 — Computing minimal variance term

5 RESULTS

As stated, the designs were verified rapidly at the MatLab
and compiled ADA code level. Moreover, RTL-level
simulations were executed to prove the argument of the
correctness at the level of the automatically generated RTL
VHDL implementations, by the CCC behavioural synthesis
tools. Thus, we ported the code to our tool, the CCC HLS
framework in order to deliver correct-by-construction,
Register Transfer Level (RTL), VHDL implementations of
this computation-intensive application. The CCC framework
consists of the frontend and the backend compiler, which
communicate with each other via the ITF database.

The frontend compiler was built using compiler-compiler
techniques and the backend compiler using logic
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end loop
temp CoutT (WIDTH) (] CoutT(W_1) (3
T2 (j) (WIDTH temp

end  loop

——compute Alignment (Laplagian term)

——usze-computed P, Q,D2T -here
for-i in 1. .HEIGHT loop
for j-in-1..WIDITH loop
templ P(i) (3 T1(i) (3
temp2 Qi) (3 T2(i) (3
temp3 templ temp?
if temp3 C-then- A1 (1) (3 else
if temp3 0 then-A1 (1) (j else
Al(i) (3 o
end if
end if
Alignment (i) (j B1(i) (3 D2T(i) (3
end loop
end loop
——compute new Phi: (G and-k-are-1}
for-i in 1. .HEIGHT loop
for j-in-1..WIDTH loop
temp? Align Alignment (i) (F
temp3 Max Lloyd Threshold(i) (j
temp4 Balloon temp? temp3 Cout{i) (j
Cout (i) (Jj temp4
end loop

Figure 6 — Final mask for GNU ADA method

programming techniques [14]. Moreover the ITF syntax and
semantics are formally defined in [15]. Both of these
methodologies are already patented with international patents
[16]. The CCC synthesis flow is programmer-friendly, rapid
and formal, which guarantees the correctness of the generated
RTL implementation. Moreover, there are a number of custom
options that can be used to drive the CCC compiler with
specific environmental and other parameters.

The backend synthesis is optimized with the PARCS
scheduler. PARCS is a formal optimizer which attempts to
parallelize as many operations in the same clock cycle as
possible, as long as control/data dependencies and resource
constraints are obeyed.

This framework leads to behavioural ADA specifications
being transformed into RTL micro-architectures, which can
subsequently be implemented easily by commercial RTL
synthesizers. RTL-level simulations were carried out to verify
rapidly our designs and prove for correctness at the level of
the automatically generated RTL VHDL implementations.
Detailed experimentation with different images, validates the
robustness of the proposed framework.

In order to verify the correctness of the translation a
commercial tool from Mentor Graphics, Modelsim, was used
to create and execute the required testbench. Test vectors
(initial contour and input images) were created and fed into
the algorithm (Model Under Test or MUT) in both the
MatLab and the ADA environment. The actual output was
finally compared to the desired one (Golden Model) to
indicate a pass or fail outcome automatically.

CONCLUSION

The benefits of the proposed framework are significant.
The method that was considered can efficiently detect object
contours by considering the weighted sum of three
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functionals; robust alignment functional, motivated by the
fact that in many cases the gradient direction is a good
estimator of the contour orientation; minimal variance
functional, which seeks the best interior-exterior separation
based on mean intensity values; geodesic active contour
functional, a regularization term for other dominant terms.
The first variations of the three functionals are extracted,
formulated in a level-set framework and solved numerically.
Even though the whole process may seem quite complicated
and demanding at first sight, its FPGA implementation
proved feasible.

In our effort to port high level ADA coding to RTL
hardware, the use of our CCC tools proved invaluable;
behavioural synthesis was automatic, very fast and correct-
by-construction. Future work in this area includes
experimentation with other computer vision algorithms such
as optical flow and graph cuts, various neural network
structures, e.g. PCNN (Pulse-Coupled Neural Networks) and
RBFN (Radial Basis Function Networks), or other machine
learning algorithms.
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! Tokrop dinocodii, an’roHKT, acucreHT Kadenpy kadenpu KOMII'FOTepHOI imxeHepil, [HcruryT TexHonmoriunoi ocsitn 3axizHoi MakenoHii,
Kacropis, I'penis

2Jloxrop dinocodii, nouenT kadenpyu koM toTepHoi imxkeHepii, [HcTuTyT TexHONOrUHOI ocBiTH 3axinuoi Maxkenowii, Kacropis, I'peris

Iloxtop ¢inocodii, LleHTp ynpapiiHHs KOMII'IOTepPHUME Mepexamu, YHiBepcurer Suinu, SHina, [peris

ATTAPATHA PEAJIIBALISI KOHTYPHOI CETMEHTAIIII 30BPA’KEHB

Po3riHyTO BUKOPHCTaHHS IIOBEIIHKOBOIO CUHTE3Y [UIsl CTBOPEHHS allapaTHOIo 3a0e3IeueHHs KOHTYPHOI cerMenTallii 300pakeHs. B sxocti
MeToly cermeHTauii oopanuii 1o6pe Binomuii, HaiiHKH, epeKTUBHUI METON, 10 INBHKO 30iraeThesl, IKMii KoMOiHYe (DyHKIIOHAIH, 3aJI€KHI Bill
reoMeTpii KpUBHX 1 BIaCTUBOCTEN 300pa’keHHs y MHOXKHHI PiBHIB CTPYKTypH. MiHiMi30BaHa (yHKIIis BUTPAT (POPMYIIOETCS K 3BaXKeHa CyMa
TPHOX IHTErpaJIbHUX Mip: CTIHKOrO BUPIBHIOBAHHS (IIparHe PO3BHHYTU MOBEPXHIO J10 KpaiB OakaHOro 00’ekra), MiHIMaIbHOI Jicrepcii (BuMmi-
PIO€ OHOPIAHICTh BCEpPEMHI 1 30BHI 00°€KTa) 1 I€0Ne3MYHO aKTUBHOI IOBEPXHi (BUKOPHCTOBYEThCSI B OCHOBHOMY I peryisipusaliii). Ajro-
PHTM cro4aTKy peanizopanuii B Matlab i ADA, a norim, BiH nepeHecenuii y Ham iHctpymeHT IloBeninkoBoro cunresy — cepenosuiie CCC HLS,
sSIKE 3[JaTHE CTBOPIOBATU NpaBuiIbHO oOynoaHi RTL VHDL peanizauii goAatkiB, 1110 iHTEHCMBHO BUKOPHCTOBYIOTh OOUHC/IEHH. TakuM 4uHOM,
HOBEIHKOBI Xapakrepuctuku ADA neperBopioroThest y MikpoapXitektypu RTL, siki moTiM MOXyTb OyTH JIETKO peai3oBaHi 3a JIOIIOMOIOI0
komepuiiiux RTL cunresaropis.

KuiouoBi cjioBa: KOHTYpHa cerMeHTalis 300pakeHb, BUCOKOPIBHEBUH CHHTe3, 30ipka KOPHUCTYBaJIbHHLBLKHX compoueccopos, IIIC-
peanizais.

Amanarunuc Tumutpuoc!, loccue Muxawn®, Aunpoymmnakuc Hocug?

!Tokrop duocodun, agbIOHKT, aCCUCTEHT Kadeapsl Kaenpbl KOMIILIOTEPHOH HHXEeHepUH, VHCTHTYT TEXHOIOTHYECKOro 00pa3oBaHus
3anaguoit Makenonuu, Kacropus, ['perus

2Jloxtop ¢uocopun, TOUEHT Kadeapbl KOMIIBIOTEPHOH HHKEHEPHH, VIHCTUTYT TeXHOIOrHYeckoro obpasoBanus 3anaaHoi MakenoHuy,
Kacropus, I'penus

3[loxrop ¢unocopuu, LeHTp yrnpasieHns KOMIBIOTEPHBIME CeTsIMH, YHuBepcuter SHunsl, Snuna, Iperust

ATMTAPATHAS PEAJIM3ALIMA KOHTYPHOU CETMEHTAIIMU U30BPAKEHUI

PaccMoTpeHo ncnonb3oBaHue MOBEIEHYECKOTO CHHTE3a I CO3IaHMs aIlllapaTHOro 00ecreyeHus! KOHTYPHON CerMEHTalluU N300pakeHHiA.
B xauecTBe MeTOna CErMEHTALMU BBIOPAH XOPOLIO M3BECTHBIN, HaJeKHbIH, 3 (eKTHBHBII U ObICTPO cXonsALIMiics MeTO, KOMOUHUPYIOIIHI
(DYHKLHMOHAIIBI, 3aBUCAILME OT T€OMETPHU KPUBBIX M CBOHCTB M300pa’keHHsl BO MHOJKECTBE YPOBHEW CTPYKTYpbl. MUHUMU3MpyeMast (pyHKIMs
3aTpar (HOpMyIUpYyeTcs KaK B3BEIIEHHAs CyMMa TPEX MHTErpallbHbIX Mep: YCTOHUHBOrO BHIPAaBHUBAHUS (CTPEMUTCS Pa3BUTH ITOBEPXHOCTb K
KpasiM JKeJIaeMoro o0beKTa), MUHHUMAIBHOH AUCIIEpCHH (M3MEpSeT OJHOPOAHOCTh BHYTPH M CHAPYXH OOBEKTa) U Ie0[e3UYECKH aKTUBHON
MOBEPXHOCTH (UCIOJb3YETCs B OCHOBHOM JJIsl PEryispu3alin). AJIropuT™ M3Ha4alIbHO peann3oBad B MatLab u ADA, a 3arem, oH nepeHeceH
B Ham nHCTpyMeHT [loBenenueckoro cunare3a — cpery CCC HLS, koTtopast ciocodHa co3naBarh npaBuibHO noctpoeHHble RTL VHDL peanm3a-
LUH TIPUIIOKEHNUH, THTEHCUBHO HMCIIONB3YIOMINX BRIYHCICHU. TakuM 00pa3oM, moBesieHIecKie xapakrepucTuku ADA npeobpa3yroTcst B MUK-
poapxutektypsl RTL, koTOphIE 3aTeM MOTYT OBITh JIETKO pEealM30BaHbI ¢ OMoOIIbI0 kKommepdeckux RTL cuHTEe3aTOpOB.

KrodeBble c10Ba: KOHTYpHAs CErMEHTAaNUs N300pakeHN i, BEICOKOYPOBHEBBIN CHHTE3, COOPKa IMOIb30BATENBCKUX comnporieccopos, [IJINC-
peanu3anusi.
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