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MINIMUM-DURATION FILTERING

Mpyriad filtering and meridian filtering are known as robust methods of signal processing. The theory of these methods is based on the
generalized Cauchy distribution and maximum-likelihood criterion. Based on the “Principle of Minimum Duration”, we present an alterna-
tive approach to justify and generalize the myriad and meridian filtering methods. The proposed approach shows that the myriad and
meridian filtering methods are special cases of the minimum-duration filtering methods derived from a concept of “signal quasi-duration”.
Mathematically, this concept is implemented through the concept of a functional (i.e., a function of a function) by using the proposed set
of cost functions. On this foundation, a “superfamily” of quasi-duration functional is built, and a general class of minimum-duration filtering
methods which depends on the three free-adjustable parameters is introduced. The numerical simulations are performed to compare the
proposed and conventional methods for the problem of filtering a constant signal which is distorted by a mixture of Cauchy, Laplacian and
Gaussian noise.

Keywords: myriad filtering, meridian filtering, duration.

NOMENCLATURE x argument of cost function;
PMD Principle of Minimum Duration; y intennediate.vari.able in the equalizing procedure;
ML maximum-likelihood; Y kth approximation to y;
RMSE Root Mean Square Error. o — free-adjustable parameter associated with the scale
A4 unknown signal amplitude, or filter output; parameter;
b constant in the equalizing procedure; B — free-adjustable parameter associated with the shape
D functional of strict duration, or “strict duration”; of data distribution;
D(A) one-variable objective function corresponded to p; ¢ — scale parameter, or standard deviation of noise;
p(e.B.) functional of quasi-duration, or “quasi- x(x) — ideal cost function;

duration” ; y(x) — arbitrary cost function;
p (@B (A) one-variable objective function W(O"B’"') (x) — “quasi-duration” cost function;

corresponded to D(O"B""); \|/§QB )(x) — “root cost function”;

Dga’ﬁ’q) quasi-duration based on the superset of cost

: \v%a’ﬁ’q)(x) — “root cost function with smoothing”, or
functions; “g-smoothed root cost function”;
(o) i i ;
Dy, quasi-duration based on the generalized W%gg,q)(x) _ «g-smoothed logarithmic cost function”;
Meshalkin cost function;
’ . (o,9) T : e,
£ (t) shape of the observed signal; Voned (X) g-smoothed median cost function”;

g(1) observed signal; \y(g’ﬁ’q) (x) — “generalized Demidenko cost function”;
& ith sample of the observed signal;

N number of signal samples, or filter window size;
P tail constant of the generalized Cauchy distribution; W(ga’B’q)(X) — member of the “superset of cost function”;
p(z) probability density function;

q free-adjustable parameter called “smoothing degree”;
s(t) arbitrary signal;

7T time interval;

w%’q) (x) — “generalized Meshalkin cost function”;

INTRODUCTION

The principle of maximum likelihood is a mathematical
foundation of many filtering methods. To use this principle,
. it is necessary to specify the joint probability densit
¢ time argument; v pecify ] P Y Y
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function which should be maximized over all desired
parameters. In the case of independent and identically
distributed data samples, the mathematical expression for
the joint probability density function is considerably
simplified with reducing the computational complexity and
filter structure.

Based on the maximum-likelihood principle, the myriad
filtering [1-2] and the meridian filtering [3—4] have been
introduced as robust methods [5—6] of signal processing in
impulsive environments. These methods are based on the
assumptions that the signal samples are independently
Cauchy-distributed and meridian-distributed, respectively.
In spite of the common features of these methods, each of
them presents an individual class of nonlinear filtering
methods with the one free-tunable parameter associated with
the scale parameter of noise distribution. Later, a more
general class has been proposed [7], where the filtering
methods depend on the two free-adjustable parameters
associated with the scale parameter and the tail-constant of
the generalized Cauchy distribution.

In this paper, we present a larger class of filtering
methods. This class depends on the three free parameters
that need to be adjusted, where the first two parameters
coincide with the two parameters mentioned above, and the
third parameter is associated with the shape of data
distribution. In contrast to [7], this class is based on the
“Principle of Minimum Duration” (PMD) [8—-10]. Therefore,
it will be referred to as the class of “minimum-duration
filtering.”

At the beginning of this paper, we describe the problem
statement based on the PMD. In general, the PMD states a
non-energy criterion, when the signal processing should
produce a signal with a minimum duration. In this paper, we
restrict the study to the approximation problem with the one
amplitude parameter and show that the minimum-duration
filtering is derived from the concept of “signal quasi-
duration” by the PMD. Mathematically, this concept is based
on the concept of a functional (i.e., a function of a function),
where the cost function of the function, which describes
the signal, is used. We construct a new set of cost functions
and build a “superfamily” of quasi-duration. On this basis,
for the discrete case we introduce a general class of the
minimum-duration filtering methods. At the end of this paper,
the performance of the minimum-duration methods is
numerically compared to that of the conventional ones for
the problem of filtering a constant signal which is distorted
by a mixture of Cauchy, Laplacian and Gaussian noise.

1 PROBLEM STATEMENT

The original problem statement is to build the filtering
methods by using the PMD. The mathematical problem
statement requires a formalization of the concept of “signal
duration”. In this paper, we use the two concepts, namely
“strict duration” and “quasi-duration” [8].

The strict duration, D, of any signal, s(¢), is defined as
a measure of the nonzero signal values. Mathematically, D
is the functional

D=D[s(t)]= [x[s(t)dt, (1)

—00

1, if x#0
0, if x=0

function which we call the “Titchmarsh cost function” (p.
319 in[11]). Since D is the functional, it will be also referred
to as the “functional of strict duration.” Despite an obvious
physical interpretation, the strict duration cannot be
constructively applied to the problem formulation [8].

The concept of quasi-duration enables to formulate the
problems constructively, although it has a less obvious

where (x) ={ plays the role of an ideal cost

physical interpretation. The quasi-duration, p(®%:B--) is the
functional

DB = plobIpgy) = [y &P [sdr, @)

—00
where a,p,... are the real free-adjustable parameters,

W(G’B"") (x) is the continuous cost function with the

property: W(Q’B"") (x) = x(x) as parameters a,f,... go to
their boundary values. This property provides the limiting

D(a’ﬁ"") to D, that makes sense in the

noiseless case. Since DB is the functional, it will be
also referred to as the “quasi-duration functional.”

Phenomenologically, the PMD is formulated as: “After
processing, the signal duration should be minimal.” An
applicability domain of the PMD depends on what concept
is used. If the concept of the strict duration is used, the
PMD can be applied to time-limited and noise-free signal.
However, if the concept of the quasi-duration is used, the
applicability domain of PMD is significantly extended, since
it becomes possible to process both the noisy signal and
the almost time-limited signal (e.g., the Gaussian pulse). On
the other hand, there are two situations when using and
implementing the PMD. In the first one, the signal is
considered as a solution, which is either a sum of the known
and unknown signal components or an unknown signal of a
given class. In this situation, the PMD is implemented either
by variation of the unknown signal component or by
variation of the signal itself. In the second one, the signal is
considered as an error (or residual) signal. Provided that the
approximation problem is formulated for a finite number of
unknown parameters, the PMD is implemented by variation
of these parameters [10].

Further the approximation problem with the one unknown
linear parameter which is the signal amplitude is considered.

process from

Let g(7) be the signal observed in the time interval 7', and
f(¢) be the shape of this signal. Let 4 be the unknown
signal amplitude. Then the error signal is

s()=g)-Af (1), teT. )

Applying the PMD to (1) with (3) leads to the following
problem

arg m/iln D(A) =arg m/iln jx[g(t) —Af(Oldt, @)

—00

where D becomes a one-variable objective function, D(A),
to be minimized in 4. The advantage of (4) is that the
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complete destruction of a large part of g(z) will not change
the solution. The disadvantage of (4) is that the negligible
noise makes it impossible to solve this problem.

Applying the PMD to (2) with (3) yields

arg m/iln D@®B) (4) = arg mfiln IW(Q"B"“') [g(t)— Af ()1drt, (5)

where D(%P--) becomes the one-variable objective

function, p(@B.) (A), to be minimized in 4. The problem

(5) defines the minimum-duration estimator of 4 based on
the concept of signal quasi-duration. Provided that

f(¢) =const, from (5) the mathematical statement of the
filtering problem for the constant signal is readily obtained.
The advantage of (5) is that by selecting a cost function,
which should give the Titchmarsh cost function in the limit,
one can eliminate the drawback of (4) and naturally satisfy
the two additional and important requirements, namely:
1) robust behavior for large values of the argument when
the contribution of the small number of large values is
limited; 2) smooth behavior for small values of the argument
to perform the optimum processing of a large number of
small values. The first one determines the filter behavior
with respect to the impulses (outliers), and the second one
determines the filter behavior with respect to the noise
(inliers). Therefore, the mathematical problem is reduced to
finding such a cost function, which satisfies the
requirements mentioned above and generalizes the some
known filtering methods (in particular, the average, median,
myriad, and meridian filtering). The way to solve this
problem is to introduce a finite set of free-adjustable
parameters which control the cost function behavior, and,
consequently, which control the filtering result in a given
noise environment.

2 REVIEW OF THE LITERATURE

The cost functions technique is the theoretical basis to
build the methods of the optimal data processing and, in
particular, of the optimal filtering. For example, using a

quadratic cost function y(x) = x? leads to the method of
average filtering, which is the optimal in the case of Gaussian
noise. The use of an absolute cost function y(x) =| x | leads
to the median filtering, which is the optimal method in the
case of Laplacian noise. An important feature of these
methods is that they do not require any adjustment to the
noise parameters. However, this is not the case for the other
methods. For example, the methods of myriad filtering and
meridian filtering are obtained by using the cost functions

v(x) =log(x*+a?) and y(x)=log(| x|+a); a >0,
respectively, which provide the optimal filtering in the cases
of Cauchy noise and “Meridian” noise [1-4]. Unlike
previous methods, these methods depend on the noise scale
parameter ¢ and require the optimal tuning of the free
parameter as o = ¢. Similarly, the use of the cost function
y(x)=log(| x|” +a?); a>0; 0< p<2 results in the
construction of the filtering method in the case when the
noise has a generalized Cauchy distribution. Here, there are
two adjustable parameters, a and p [7]. Unfortunately, the
cost functions mentioned above do not provide the limiting

process to y(x). Therefore, they can not be used as a

function \JI(OL’B"") (x). However, they can be derived as
special (limiting) cases for the given noise environment.

The limiting process from the quasi-duration functional
to the functional of strict duration is the theoretical
foundation of the proposed approach. This requirement
noticeably limits the set of cost functions that can be used
in (5). In [8, 10, 13] the following sets were considered: 1)
one-parameter set of the “root cost functions”; 2) two two-
parameter sets of the root cost functions with the quadratic
and absolute smoothing; 3) two three-parameter sets of the
“g-smoothed root cost functions” and “generalized
Demidenko cost functions”.

The use of the one-parameter set of the “root cost

functions” leads to the following. Let y (%) (x) be the
cost function

v =lx/AP; 0<p<l, (©)

where A is the constant with the physical dimension of x;

further A = 1. Since lim w%ﬁ)(x) =y (x), the function
B—>+0

(6) may be used in (2). In addition, the following properties

hold: (i) \V%B)(x) is neither convex nor concave for all real

x ; (i) \;/Sf)(x) has even symmetry, where \V(I?) (0)=0and

yP@En=1; @iy lim [dyP (x)/dx]= -0 and
x—>-0

lim [dy ) (x)/dx]= 0. Due to its typical behavior, the
x—+0

function W%B)(x) was named as the “root cost function”
(even when B is an irrational number) [10]. Let the quasi-

duration functional based on (6) be denoted as p(P). Then
substituting (6) into (5) yields [10]

arg min DB (4) =arg min [le-ar P ao<p<1, ()
T

where D(B)( A) is the objective function to be minimized in
A. The advantage of (7) is that the solution of (7) makes
sense in the cases when there is the complete destruction
of the large part of data and when the data are distorted by
noise. The disadvantages of (7) are the following. First, the
noise appearance can lead to the bias of estimator. Second,
the noise nature is left out of account. The latter means that
the cost function which depends on more free parameters
and which takes into account the noise nature can be more
efficient than (6).

The two-parameter sets of the root cost functions with
the quadratic and absolute smoothing are defined by the
similar equations that by introducing a smoothing degree,
g, have been summarized as [10]

w00 = kPO [ a1, )

0<p<l; B<gq;
kPO 1 |7 /a)P/e —1) and y P () =1,
This function represents a three-parameter set of the

where a>0; 0<g<o;
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“g-smoothed root cost functions”. Passing to the limit in (8)
as B — +0 yields the “g-smoothed logarithmic cost
function”

Yo () = ke In(1+ | x |7 /a?), ©)

where a>0; 0<g <o, kl(ooé’q) =1/In(1+ | x; |7 /a9,
This function is the generalization of the myriad and meridian
cost functions, which are for ¢ = 2 and g = 1, respectively.
It is easy to see that in the case of generalized Cauchy
distribution the “smoothing degree” parameter g coincides
with the tail constant p of this distribution.

Contrariwise, passing to the limit in (8) as B —1 yields

Vined () = ke [0+ x| T o) -1);

med

0<g<w,(10)
where &%) =[(1+|x; | /)7 ~1]; x, %0 is the
normalization point, where Wfﬂi’a‘,])(xl)zl. Since the

\yfnae’a‘,])(x) approaches the absolute cost function for

|x|? /a? >> 1, further it will be referred to as the “g-
smoothed median cost function” (despite the fact that for
g > 1 and for g <1 the behavior of (10) is different near the
zero value of x). If ¢ = 2, the special case of (10) is a pseudo-
Huber cost function [12]. But if ¢ =1, from (10) one obtains
the absolute cost function.

The analysis of (8) shows that under fixed ¢ the limiting

process from \;/S?’B’q)(x) to (x) is performed by o and B

(when their boundary values are zero) just in the one

direction (first by o and then by PB). This drawback has

been eliminated in [13] by generalizing the cost functions

proposed by E. Z. Demidenko [14] and L. D. Meshalkin [15].
2

X
The function \IID(X)Zﬁ was suggested by
X" +a

E. Z. Demidenko for the regression problem [14]. By
introducing b and ¢ parameters, it can be generalized to [13]

x| —B/q
(a.B.q9) :k(a,ﬁ,fl) 1-11 11
Vb (x)=kp ( + o4 ’ (I
where a>0, 0<B<oo, 0<g<m, and
/
B, (+]a/x; [P
s PO = 1 is defined by

o/ xy [P = (s [P
\u(Da’B 4) (x1) =1. It is easy to check, that the Titchmarsh cost
function %(x) is the limit of (11) as p—> 0, and the
g-smoothed logarithmic cost function ngg’q)(x) is the limit
of (11) as B — +0.

The function vy, (x)=1- exp(— X2 /ocz) was suggested

by L. D. Meshalkin for robust estimation [15], [16]. It can be
generalized to [13]

x|
\ug&’q)(x) = k](l,(}’q)ll - exp[——| J] J] i (12)

o

10

where a>0, 0<g<o and

1 .
k](‘f}’q) = [1—exp(—|x1 | /aq)T is

wg\?’q)(xl):l. It is obvious that as o — 0 the function

defined by

w'{%9 (x) tends to y(x). In addition, for fixed o >0 it
approaches the y(x) as ¢ =0, and it has a form of the
“rectangular hole” as ¢ — % [13].

3 MATERIALS AND METHODS

It is seen that (11) is a continuation of (8) on negative
values of . Hence, there exists a continuous (by o, B and q)
set of cost functions which is defined by the common member

(oB.) wsal[;, 1x2)
a&,P.q — la,p.g
\VS (X)—ks [l‘l‘?] 11, (13)
where k(PO = 1/[(1+ | x |7 /aD)P4 —1], —0<p<1,
a>0,0<qg<o, B < q.This set incorporates the following
cost functions: 1) g-smoothed median cost functions for
B=1 (in particular, the pseudo-Huber cost function);
0<B<l;
3) g-smoothed logarithmic cost functions for B=0 (in
particular, the meridian and myriad cost functions);
4) generalized Demidenko cost functions for —o <3 <0;
5) Titchmarsh cost function for 3 — —o. Since this set is
sufficiently representative, it will be referred to as a
“superset” of cost functions. Below, the Meshalkin cost
function is also included in this superset.

With regard to the small values of x, the contribution of
o is different for each cost function derived from (13). To
eliminate this shortcoming, we have proposed to equalize
the second-order derivative of the cost functions at zero
[13]. Further, the method for producing a modified superset
of cost functions is presented for ¢ =2. The similar
technique may be obtained for any 0 < g <.

2) g-smoothed root cost functions for

Let OL,znyr be the fixed value of o? for the myriad cost

function. Let the equality:
APy $PD @)/ dx* =d (%P (x)/dx” be hold at x =0.

Then

B/2) 1 14

where y = a% denotes o2 for the function Wga,B,Z) (x) and

bz(x,znyrln(l+|x1 |2 /(xfnyr). Equation (14) states the

equalizing problem, where ) is to be determined, and can
be solved by using the Newton’s method for finding roots

u(V) , (15)

Ykr1 =Vk
i u'(yy)



p-ISSN 1607-3274. PanioenekrpoHika, iHpopmaruka, ynpasiinuas. 2016. Ne 1
e-ISSN 2313-688X. Radio Electronics, Computer Science, Control. 2016. Ne 1

where y; is the kth approximation to y, and where u(yy)
and u'(yy ) are the reduced function and its first derivative
at yy, respectively. The convergence of (15) is ensured by
the following approach. For —o<f <0, the function

B/2
2
u(y)=y (HﬂJ -1 —%b =0 should be used with
y
its first derivative
B/2
2 2
u'(y)=(1+—| ul ] {1——([3/2)')612' }—1 and with the
y y+|x |

initial guess yoz(xfnyr. For 0<B<1, the function

/2
u(y):[(l+y|x1 |2)B —1}/y—%b:0 should be used

with its first derivative
2 /2-1 2 2 2
(= B2 PP Py (el 2 )P 41
)= yz

and with the initial guess yq =1/(xfnyr. The equalizing
procedure based on (15) typically converges to machine
precision within 3-5 iterations.

Fig. 1 represents the superset and the modified superset
of cost functions for ¢ =2 and x; =1. Fig. la shows the
superset without the equalizing procedure, when all cost

functions have the same value o =0.01. In this figure,
there are depicted the pseudo-Huber (curve 1), g-smoothed
root with B =1/2 (curve 2), myriad (curve 3) and generalized
Demidenko (the curves 4-7 are for =-1;,-2;-5;—100 in
(13), respectively) cost functions. It is seen that the sequence
of these cost functions tends to y(x) as — —oo. Fig. 1b
shows the modified superset of cost functions, which is

produced by the equalizing procedure for (xg,,y,, =0.01. Here,
the curve 7 is similar to the graph of the Meshalkin cost
function, coinciding visually with it. Thus, in the limit as
3 — —oo, the Meshalkin cost function is obtained. This fact
can readily be proved, since the finiteness of the second-
order derivative at zero is provided on condition that

a% = const * . Substituting this value into (13) with g = 2

and passing to the limit in (13) as — —oo yield the
Meshalkin cost function.

Based on (13), the quasi-duration functional can be
expressed as

D§a7Baq) = Dgaaﬁaq)[s(t)] — I\Vga7ﬁ’q)[s(t)]dl — kéaaﬁaq) X

—00

- B/q
xj [1+|S((j—()]|q} —1ldt, (16)

—o0

where ¢ >0, —0<B<1, 0<g<o, and B < ¢q. It has the
following special cases: 1) g-smoothed median functional

157

x)

(ex,3,2)

S

Function

(@B.2)
*)

S

Function v

Figure 1 — Superset of cost functions (a) without and (b) with the
equalizing procedure

(when B =1); 2) pseudo-Huber functional (when B =1 and
g=2); 3) g-smoothed root functional (when 0<B<1);
4) g-smoothed logarithmic functional (when B — 0); 5)
myriad functional (when B — 0 and ¢ =2); 6) meridian
functional (when p — 0 and g =1); 7) generalized Demidenko
functional (when —oo <3 <0); 8) Demidenko functional
(when B=-2 and ¢=2). The generalized Meshalkin
functional defined by

D{FVs(] = kD | {Few[—'sg—zwﬂm a7

—00

is also derived from (16) in the limit as [} — —oo after the
equalizing procedure. Thus, (16) determines a large family
of functionals, which will be referred to as the “superfamily
of quasi-duration”. On this basis, the minimum-duration
estimate is defined as a solution of the appropriate
optimization problem related to minimizing the quasi-duration
(16). Assuming f(t) = const, below we write the general
class of the minimum-duration filtering methods for the
discrete case with the following notations: g; is the sample
of observed signal, N is the number of signal samples in
filter window, and 4 denotes the unknown amplitude value,
which is the filter output. This class is given by the problem

11
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N
arg min kga’ﬁ’q) >
4 i=1

n B/q
[ngi— IJ _11L, s

a?

where o >0, —0<B<1, 0<g<w, and B < g. Note, that

k{0 5 0 for 0<B<1 and k{*P4) <0 for —o <B<0.

The filtering consists in finding the optimal value of 4. The
special cases of (18) can be written more simply without the
nonessential constants.

The computational complexity of the optimization problem
(18) can be reduced [17], when instead of the optimal value,
Ae R, where R is the set of real numbers, the quasi-optimal

value, 4e{g;|i=1,...,N}C R, is computed as the filter

output. It is seen that the quasi-optimal value of 4 makes, at
least, one of the terms in the sum (18) equal to zero.

4 EXPERIMENTS AND RESULTS

We have compared the potential capability of the
minimum-duration methods in the problem of filtering the
constant signal distorted by additive noise. Further, we have
selected the g-smoothed root filtering ((18) with ¢ =2 and
B =1/2), Demidenko filtering ((18) with ¢ =2 and § =-2),
and Meshalkin filtering ((18) with ¢ =2 and B — o). These
methods have been compared with the methods of average,
median, pseudo-Huber, myriad and maximum-likelihood (ML)
filtering. The three cases, when the constant signal with
amplitude 4 =1 was additively distorted by the Cauchy
noise (case 1), by the mixture of Cauchy and Laplacian noise
(case 2), and by the mixture of Cauchy and Gaussian noise
(case 3), have been examined with the same value of the
scale parameter for each type of noise. The mixture of Cauchy
and Laplacian noise was formed with a priori probabilities
of 1/2 for each. The mixture of Cauchy and Gaussian noise
was formed with a priori probabilities of 2/3 and 1/3,
respectively. Thus, in these cases, the probability density
function, p(z);z€ R, of noisy signal is defined by

() =pe@=1—L1  (in the

case 1),
T (z—A)* +c°

(2)=1 Lo pu(a)=—expl - 2241,
p(z —EPC(Z)"'EPL(Z)’ L " )

c . 2 1
XZE (in the case 2) and p(z)=§pc(z)+§pG(z);

1

pG(Z) = \/%G

For the calculations, the fragment of noisy constant
signal was numerically simulated on a set of N=121 discrete
samples, where N is the length of filter window. The filtering
was to estimate the signal amplitude by finding the location
of the global minimum of the corresponding optimization
problem with the relative accuracy 0,1%. Further, the
estimator’s Root Mean Square Error (RMSE) averaged
arithmetically over 10000 noise realizations have been
calculated as a function of the free-adjustable parameter o
that associated with the scale parameter of a given noise

exp[— (z— A)2 /2(52] (in the case 3).

12

distribution. In these calculations, the modified superset of
cost functions was used for g =2.

Fig. 2 represents the calculated RMSE/c ratio vs the
o/ o ratio, where ¢ =0,1. The solid curves with heavy dots
depict the calculated values for the (1) pseudo-Huber
filtering, (2) g-smoothed root filtering with g=2 and B=1/2,
(3) myriad filtering, (4) Demidenko filtering, and (5) Meshalkin
filtering; the dotted curve (6) with heavy dots depicts the
calculated values for ML filtering; the dotted horizontal line
depicts the calculated value for the median filtering.

0.15 \ \ - , P

0.145}

Ratio RMSE / o
o
S
o

0.135}

0.13 3 .
0 0.5 1 1.5 2

Ratio a/o
a

0.1

0.105} LS

0.1}

Ratio RMSE / o

0.095

0.09

Ratio a/c
b

0.135

0137

0.125¢

Ratio RMSE / o

0.12+

0.115 g ,
0 0.5 1 1.5 2

Ratio a/c
C

Figure 2 — RMSE/ G ratio vs o/ ¢ ratio for the constant signal

distorted by the (a) Cauchy noise, (b) mixture of Cauchy and
Laplacian noise, and (c) mixture of Cauchy and Gaussian noise
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5 DISCUSSION

As shown in Fig. 2a, in the case 1 the myriad filtering,
which is also the ML filtering, provides the best result at
o /o =1,1 (theoretically, a./ o =1). Moreover, it provides the
best results within the range 0,6 <o /c <2. However, if

a/5<0,4 and o goes to zero, the performance of the
myriad filtering (as well as the other minimum-duration
filtering with the exception of the pseudo-Huber filtering)
dramatically deteriorates; whereas that of the median filtering
remains steady throughout. Note also, if the a/o ratio
becomes larger than 2, the RMSE/G ratio becomes the larger
for all these methods (except for the median filtering) and
tends to the value which is obtained by the average filtering.
In the case 2, Fig. 2b shows that the g-smoothed root filtering
(with ¢ =2 and B =1/2) provides the best result within the
range 0.4 < a/c < 0.7 and achieves the performance of the
ML filtering at o./c =0.7. However, for o/ > 0.8 the ML
filtering, which tends to the median filtering as o goes to
infinity, is the best. In the case 3, Fig. 2¢ shows the advantage
of the Demidenko filtering, although this advantage is not
significant here. This figure shows that within the range
0.6 < a/ o < 2 the Demidenko filtering is slightly better than
the ML filtering. This can be explained by the fact that the
ML estimator has no optimum properties for finite samples.
In addition, for all these three cases, the selected minimum-
duration filtering methods, used with ¢ = 2 (which was close
to the optimal value of ¢) and optimal o, were 5-8 times
better than the average filtering. However, the smaller N
was, the smaller the advantage.

Thus, these numerical simulations show the following.
For the problem of filtering the noisy constant signal, the
potential of the minimum-duration filtering exceeds the
potential of the median and average filtering. As would be
expected, the myriad filtering is the best for the Cauchy
noise, the g-smoothed root filtering (withg =2 and f=1/2)
is the best for the given mixture of Cauchy and Laplacian
noise, and the Demidenko filtering is the best for the given
mixture of Cauchy and Gaussian noise.

CONCLUSIONS

The goal of signal processing based on the PMD is to
produce the signal with the minimum duration. To describe
the signal duration in practice, the concept of the signal
quasi-duration can be used. This concept is implemented
by the quasi-duration functional and, in particular, by the
quasi-duration objective function. The superfamily of the
quasi-duration functional is proposed. It covers the families
that include the g-smoothed median functional, g-smoothed
root functional, g-smoothed logarithmic functional, the
generalized Demidenko and Meshalkin functionals.

The general class of the minimum-duration filtering
methods which depends on the three free-adjustable
parameters is introduced. The myriad and meridian filtering
methods occupy the intermediate positions in this class.

The potential of the minimum-duration filtering exceeds
the potential of the median and average filtering. Theoretically,
the minimum-duration filtering methods enable to filter the
signal, which is destroyed in more than half length of the
filter window, when the median filtering may fail.

By adjusting the free parameters, the proposed approach
enables efficient processing of the signal which is distorted
by noise of different types. Finding optimal values of o, B
and ¢ is the major problem in taking full advantage of the
minimum-duration filtering.
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PAJIIO®I3UKA

Bopyisko B. @.!, Boek C. M.?

'Kanz. ¢us.-mar. HayK, C.H.C., C.H.C. Kad)eApbI IPHUKIIAJHON 1 KOMIIBIOTEPHOH pannopu3uKy JIHENpOoIeTpPOBCKOro HAlIMOHAIBHOIO YHUBEP-
curera, JIHEMPONETPOBCK, YKpanHa

’Kauz. u3.-Mar. HayK, JOLEHT, JOLEHT Kadepbl aBTOMAaTH3HPOBAHHBIX CHCTeM 00paboTky HH(OpManny J[HEIPOIETPOBCKOrO HAlHOHAIIb-
HOTO YHUBEPCHTETA, JIHEPONETPOBCK, YKpanHa

OUJIBTPALIUA CUTHAJIOB HA OCHOBE IIPMHIUIIA MUHUMYMA JUIMTEJIBHOCTH

Merozabl MUPHAIHOH 1 MEPUANAHHON (DHIBTPALMM U3BECTHBI KaK poOACTHBIE METObI 00pa0OTKM CUrHANOB. Teopust STUX METOJI0B OCHO-
BaHa Ha 0000LIEHHOM pacrpeneneHuy Komu 1 KpuTepur MakCHMMajabHOIO IPaBAonofodus. Mel NpeACTaBIsieM albTePHATUBHBIA MOAXO,
OCHOBAHHBI Ha NMPUHIUIE MUHHUMYMa JUIMTEILHOCTH, K OOOCHOBAHUIO U OOOOIIEHHIO METOL0B MUPHAJIHON M MepUIHaHHON (QuIbTpanuu.
Ipennaraemslil Moxxo[ IMOKA3bIBAET, YTO MUpUAIHAS U MEpHIAMaHHAs (HUIBTPALs SBISIOTCS YAaCTHBIMU CIy4yasMH METONOB (uibTpanuu,
KOTOpbI€ BBIBOJSATCS U3 KOHLIENIHU «KBa3HIMTEILHOCTh CUTHANA». MaTeMaTH4ecKy 9Ta KOHLIELHs Pealli3yeTcs Yepes MOHATHE (pyHKIMOHAA
C IOMOLIBIO NPEITI0KEHHOI0 MHOXKECTBA CTOMMOCTHBIX (pyHKuuil. Ha 3ToM dyHIamMeHTe ocTpoeHo «cynepceMeiicTBo» (PyHKIHOHANA KBa3H-
JUIMTENBHOCTH ¥ BBEJEH OOIIMI KJIacC METOOB (pUIBTPALIMH, KOTOPBIH 3aBUCUT OT TPeX CBOOOIHO-HACTPauBaeMBbIX apamMeTpoB. IIpuBonsrcs
pe3yJbTaThl YUCIOBOIO MOJEIUPOBAHUS 1 CpaBHEHUs 3()(HEKTUBHOCTU NPEJIOKEHHBIX M CTAHIAPTHBIX METOJOB s 3a7aud (QUIbTPALUU
MIOCTOSHHOTO CUTHaJIa, KOTOPBIM MCKa)keH cMechlo IymoB Komm, Jlannaca n Iaycca.

KumoueBble c1oBa: MupuaHas QUIbTpaLs, MEpUAMaHHAS (PUIIbTPALIUS, AIUTEIbHOCTD.

Bopyisko B. @.!, Boek C. M.

'Kanpz. dis.-mar. HayK, C.H.C., C.H.C. Kad)epH IPHKIIAJHOI Ta KOMII I0TepHOI pafiohizuky JIHIIPONEeTpOBCHKOr0 HAiOHAIBHOTO YHIBEpCHTE-
Ty, JAHIIpOneTpoBChK, YkpaiHa

’Kanp. ¢i3.-Mar. HayK, JOLEHT, JOLEHT KaeApH aBTOMAaTH30BAHUX cHCTeM 00poOku iH(popmawuil JHIIPONETpOBCHKOr0 HALiOHAILHOTO
yHiBepcuTeTy, JIHIIponeTpoBchK, YKpaiHa

OLJIbTPALISL CUTHAJIIB HA OCHOBI IPUHLIUITY MIHIMYMY TPUBAJIOCTI

Meroznu mipiagHoi it MepuaianHoi GinbTpauii BigoMi sk podacTHi MeToau 00poOKkH curHaiiB. Teopis LUX METOAIB 3aCHOBAaHA HA y3arallb-
HeHoMy posnozini Kori Ta kpurepii MakcuMabHOI IpaBaonogioHocTi. My HalaeMo albTepHATUBHUM MXi], 3aCHOBaHUH Ha IPUHLIUII MiHIMY-
My TPUBAJOCTi, JO OOTPyHTYBaHHS Ta y3arajbHEHHS METOAIB MipiafHoi i MepuaiaHHOI QinbTpanuii. 3anpONOHOBaHUI MiAXiA IOKA3ye, YTO
MipiaJgHa i MepuiaHHA (QLIBTpaLii € YACTHHHUMH BUIIAJKaMH METOZIB (UIbTpalii, sKi BUBOAATHCS 3 KOHIECIII «KBa3ITPUBAIIICTD CHTHAILY».
MareMaTH4HO Ll KOHLEMNIis peali3y€eThCsl yepe3 MOHATTS (PyHKIHOHAIY 3a JOHNOMOIOI0 3alpONOHOBAaHOI MHOXKMHM BapTicHUX (yHKuii. Ha
obOMy (pyHAAMEHTI NOOYIOBAHO «CyHepciMencTBOY» (DyHKIIOHANTY KBa3iTPUBANICTh Ta YBEAEHO 3arajbHUN Kiac MeToxuiB (inmbrpauii, skuit
3aJIeXKUTh BiJ] TPHOX MapaMEeTpiB, 110 BUIBHO HAAMITOBYIOThCA. [IpUBONATBCS pe3ynbTaTH YMCIOBOrO MOJEIIOBAHHS JUIsl HOPIBHSAHHS €()eKTUB-
HOCTI 3aIpOIIOHOBAHUX Ta CTaHJAPTHIX METOMIB AJIs 3ajadi (iIbTpalii nocTiifHOro cUrHaiy, sSIKMii € CIoTBOPEHMM CyMilnmo mymis Ko,
Jlannaca Ta I'aycca.

Kumouosi cnoBa: mipiagHa ¢inbTpanis, MepuianHa QiUIbTpaLis, TPUBAIIICTb.
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