THE METHOD OF ALTERNATIVE RANKING FOR A COLLECTIVE EXPERT ESTIMATION PROCEDURE

Authors

  • K. E. Petrov Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • A. O. Deineko Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • O. V. Chala Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
  • I. Yu. Panfоrova Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2020-2-9

Keywords:

Decision making, utility theory, multi-criteria estimates, comparative identification, utility function.

Abstract

Context. The actual problem of constructing a mathematical model of a collective multi-criteria expert estimation of alternatives, which is an integral part of the automation of the intellectual decision-making process, has been solved. 

Objective. The goal of the work is to develop a method for determining relative collective multi-criteria estimation of alternatives and their subsequent ranking based on information about personal preferences of experts. The object of research is the process of analysis and decision-making in multi-criteria conditions. The subject of the research are the methods of structural and parametric identification of the model of multi-criteria estimation of alternatives.

Method. The paper proposes an approach to constructing a model of collective multi-criteria estimation of alternatives based on information about partial-order relationships established by experts on the set of available alternatives. A method for structural and parametric identification of a model of multi-criteria estimation, which based on the ideas of the theory of comparator identification is proposed. It is shown that the solution to the problem of choosing the structure of a model of optimal complexity should be carried out in the class of Kolmogorov-Gabors polynomial. To find the parameters of the estimation model, it is proposed to use a method that is based on the calculating of the Chebyshev point. It is shown that in this case, the parametric identification problem of the model can be reduced to the standard linear programming problem. The scalar collective multi-criteria estimates of alternatives obtained on the basis of the synthesized mathematical model make it possible to compare them with each other in terms of “quality” and, thus, select the “best” of them or rank them.

Results. An approach has been developed to construct a mathematical model of collective multi-criteria expert estimation, on the basis of which it is possible to determine group generalized estimates of alternatives, as well as to rank them. The results of simulation modeling, which demonstrate the practical feasibility and effectiveness of the proposed approach are presented.

Conclusions. A significant advantage of the approach is the ability to use only non-numerical information about the preferences of experts. This allows you to partially solve the problem of subjectivity of expert opinions in the process of decision-making and reduce the cost of a collective expert estimation of alternatives. The synthesized model of collective expert estimation can serve as the basis for solving the problems of estimating the quality of various projects, investment management, strategic planning, and the development of problem-oriented decision support systems. In the future, it is worth considering the possibility of supplementing the presented approach with the possibility of taking into account estimates of the qualitative composition and competence of individual experts, which are included in the group. 

Author Biographies

K. E. Petrov, Kharkiv National University of Radio Electronics, Kharkiv

Dr. Sc., Professor, Head of the Department of Information Control Systems

A. O. Deineko, Kharkiv National University of Radio Electronics, Kharkiv

PhD, Associate Professor of the Department of Artificial Intelligence

O. V. Chala, Kharkiv National University of Radio Electronics, Kharkiv

PhD, Associate Professor, Professor of the Department of Information Control Systems

I. Yu. Panfоrova, Kharkiv National University of Radio Electronics, Kharkiv

PhD, Associate Professor, Professor of the Department of Information Control Systems

References

Krjuchkovskij V. V. Petrov E. G., Sokolova N. A., Hodakov V. E. Introspektivnyj analiz: metody i sredstva jekspertnogo ocenivanija. Herson, Izdatel̓̓’stvo Grin’ D.S., 2011, 169 p.

Petrov K. E., Krjuchkovskij V. V. Komparatornaja strukturnoparametricheskaja identifikacija modelej skaljarnogo mnogofaktornogo ocenivanija. Herson, Oldi-pljus, 2009, 294 p.

Saaty T. L. The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making, Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science. New York, Springer, 2016, Vol. 233, pp. 363−419. DOI: 10.1007/978-1-4939-3094-4_1

Figueira J. Mousseau V., Roy B. ELECTRE Methods, Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science. New York, Springer, 2016, Vol. 233, pp. 155−185. DOI: 10.1007/978-1-4939-3094-4_5

Brans J. P. Smet Y. De PROMETHEE Methods, Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science. New York, Springer, 2016, Vol. 233, pp. 187−219. DOI: 10.1007/978-1-4939-3094-4_6

Papathanasiou J., Ploskas N. TOPSIS, Multiple Criteria Decision Aid. Springer Optimization and Its Applications. Cham, Springer, 2018, Vol. 136, pp. 1−30. DOI: 10.1007/978-3319-91648-4_1

Larichev O. I. Teorija i metody prinjatija reshenij, a takzhe hronika sobytij v volshebnoj strane. Moscow, Logos, 2000, 294 p.

Petrovskij A. B. Teorija prinjatija reshenij. Moscow, Izdatel’skij centr «Akademija», 2009, 400 p.

Podinovskij V. V., Gavrilov V. M. Optimizacija po posledovatel’no primenjaemym kriterijam. Moscow, LENAND, 2016, 194 p.

Keeney R. L., Raiffa H. Decisions with multiple objectives– preferences and value tradeoffs. Cambridge, Cambridge University Press, 1993, 569 p. DOI: 10.1017/CBO9781139174084

Larichev O. I. Verbal’nyj analiz reshenij. Moscow, Nauka, 2006, 186 p.

Lomazov V. A., Matorin S. I., Nehotina V. S. Kognitivnaja model’ processa prinjatija reshenija pri vybore metodov ocenivanija ITproektov, Fundamental’nye issledovanija, 2015, No. 6–3, pp. 490−496.

Dyer J. S. Multiattribute Utility Theory (MAUT), Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science. New York, Springer, 2016, Vol. 233, pp. 285−314. DOI: 10.1007/978-1-4939-3094-4_8

Bidoux L., Pignon P., Benaben F. Planning with preferences using Multi-Attribute Utility Theory along with a Choquet Integral, Engineering Applications of Artificial Intelligence, 2019, Vol. 85, pp. 808−817. DOI: 10.1016/j.engappai.2019.08.002

Bukhsh Z. A. , Stipanovic I., Klanker G., O’Connor A., Doree A. G. Network level bridges maintenance planning using Multi-Attribute Utility Theory, Structure and Infrastructure Engineering, 2019, Vol. 15, No. 7, pp. 872−885. DOI: 10.1080/15732479.2017.1414858

Yi Z., Wen Y., Wu X. Impacts of networking effects on software reliability growth processes: A multi-attribute utility theory approach, Quality and Reliability Engineering International, 2019, Vol. 35, No. 6, pp. 1952−1972. DOI: 10.1002/qre.2486

Alshamrani O., Alshibani A., Alogaili M. Analytic Hierarchy Process & Multi Attribute Utility Theory Based Approach for the Selection of Lighting Systems in Residential Buildings: A Case Study, Buildings, 2018, Vol. 8, № 6, P. 73. DOI: 10.3390/buildings8060073

Bregar A. Decision support on the basis of utility models with discordance-related preferential information: investigation of risk aversion properties, Journal of Decision Systems, 2018, Vol. 27, No. 1, pp. 236–247. DOI: 10.1080/12460125.2018.1468170

Kolmogorov A. N. O predstavlenii nepreryvnyh funkcij neskol’kih peremennyh v vide superpozicij nepreryvnyh funkcij odnogo peremennogo i slozhenija, Doklady AN SSSR, 1957, Vol. 5(114), pp. 953–956.

Ovezgel’dyev A. O., Petrov K. E. Modeling individual multifactor estimation using GMDH elements and genetic algorithms, Cybernetics and Systems Analysis, 2007, Vol. 43, pp. 126–133. DOI: 10.1007/s10559-007-0031-0

Tihonov A. N., Arsenin V. Ja. Metody reshenija nekorrektnyh zadach. Mosc Nauka, 1986. – 288 s.

Zuhovickij S. I., Avdeeva L. I.. Linejnoe i vypukloe programmirovanie. Moscow, Nauka, 1967, 460 p.

Sitkov R. A., Shhel’nikov V. N., Petrushin I. E. Metodika provedenija jekspertnogo oprosa po ocenivaniju svojstv i faktorov, vlijajushhih na kachestvo i kompetentnost’ jekspertov, Fundamental’nye issledovanija, 2016, No. 11–5, pp. 944–948.

Ovezgel’dyev A. O., Petrov K. E. Fuzzy-Interval Choice of Alternatives in Collective Expert Evaluation, Cybernetics and Systems Analysis, 2016, Vol. 52, pp. 269–276. DOI: 10.1007/s10559-0169823-4

How to Cite

Petrov, K. E., Deineko, A. O., Chala, O. V., & Panfоrova I. Y. (2020). THE METHOD OF ALTERNATIVE RANKING FOR A COLLECTIVE EXPERT ESTIMATION PROCEDURE. Radio Electronics, Computer Science, Control, (2), 84–94. https://doi.org/10.15588/1607-3274-2020-2-9

Issue

Section

Neuroinformatics and intelligent systems