CLUSTERING OF DOCUMENT COLLECTIONS BASED ON THE ADAPTIVE SELF-ORGANIZING NEURAL NETWORK

Authors

  • Ye. V. Bodianskiy Kharkiv National University of Radio Electronics, Ukraine
  • V. V. Volkova Kharkiv National University of Radio Electronics, Ukraine
  • A. S. Yegorov Kharkiv National University of Radio Electronics, Ukraine

Abstract

In this paper the text document clustering method based on an adaptive self-organizing neural network is proposed. The adaptive self-organizing neural network allows to find cluster centroids in real time. The network is tuning using self-learning recursive algorithm that is the generalization of Kohonen learning rule. This neural network can be used in clusterization of text documents in conditions of overlapping classes.

References

Kohonen T. Self-Organizing Maps / T. Kohonen // Berlin: Springer-Verlag. – 1995. – 362 p.

Kaski S. WEBSOM – Self-organizing maps of document collections / S. Kaski, T. Honkela, K. Lagus, T. Kohonen // Neurocomputing. – 1998. – 21. – P. 101–117.

Lagus K. WEBSOM for textual data mining / K. Lagus, T. Honkela, S. Kaski, T. Kohonen // Artificial Intelligence Review. – 1999. – 13. – P. 345–364.

Kohonen T. Self organization of a massive document collection / T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero, A. Saarela // IEEE Trans. on Neural Networks. – 2000. – 11. – P. 574–585.

Höppner F. Fuzzy-Klusteranalyse. Verfahren für die Bilderkennung, Klassification und Datenanalyse / F. Höppner, F. Klawonn, R. Kruse // Braunschweig: Vieweg. – 1996. – 280S.

Höppner F. Fuzzy Clustering Analysis: Methods for Classification, Data Analysis, and Image Recognition / F. Höppner, F. Klawonn, R. Kruse, T. Runkler // Chichester: John Willey&Sons Ltd. – 1999. – 289 p.

Vuorimaa P. Fuzzy self-organizing maps / P. Vuorimaa // Fuzzy Sets and Systems. – 1994. – 66. – P. 223–231.

Vuorimaa P. Use of the fuzzy self-organizing maps in pattern recognition / P. Vuorimaa // Proc. 3-rd IEEE Int.Conf. Fuzzy Systems “FUZZ-IEEE’94”. – Orlando, USA. – 1994. – P. 798–801.

Bodyanskiy Ye. Combined learning algorithm for a self-organizing map with fuzzy inference / Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy, A. Stephan // Ed. by B. Reusch “Computational Intelligence, Theory and Applications”. – Berlin-Heidelberg: Springer. – 2005. – P. 641–650.

Tsao E.C.-K., Bezdek J.C., Pal N.R. Fuzzy Kohonen clustering networks / E.C.-K. Tsao, J.C. Bezdek, N.R. Pal // Pattern Recognition. – 1994. – 27 – P. 757–764.

Pascual-Marqui R.D. Smoothly distributed fuzzy C-means: a new self-organizing map / R.D. Pascual-Marqui, A.D. Pascual-Montano, K. Kochi, J.M. Carazo // Pattern Recognition. – 2001. – 34. – P. 2395–2402.

Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms / J.C. Bezdek // N.Y.: Plenum Press. – 1981. – 272 p.

Bodyanskiy Ye. Recursive fuzzy clustering algorithms / Ye. Bodyanskiy, V. Kolodyazhniy, A. Stephan // Proc. East West Fuzzy Coll. 2002. Zittau / Görlitz: HS. – 2002. – P. 164–172.

Bodyanskiy Ye. Computational intelligence techniques for data analysis / Ye. Bodyanskiy // Lecture Notes in Informatics. – Bonn: GI, 2005. – P-72. – P. 15–36.

Dvoretzky A. On stochastic approximation / A. Dvoretzky // Proc. 3-rd Berkley Symp. Math. Statistics and Probability. – 1956. – 1. – P. 39–55.

Published

2008-09-15

How to Cite

Bodianskiy, Y. V., Volkova, V. V., & Yegorov, A. S. (2008). CLUSTERING OF DOCUMENT COLLECTIONS BASED ON THE ADAPTIVE SELF-ORGANIZING NEURAL NETWORK. Radio Electronics, Computer Science, Control, (1). Retrieved from https://ric.zp.edu.ua/article/view/23597

Issue

Section

Neuroinformatics and intelligent systems