ESTIMATION OF FEM AND FDTD METHODS FOR SIMULATION OF ELECTROMAGNETIC CHARACTERISTICS OF POLARIZATION TRANSFORMING DEVICES WITH DIAPHRAGMS
DOI:
https://doi.org/10.15588/1607-3274-2021-4-4Keywords:
KEYWORDS: FDTD; FEM; FIT; finite differences method; finite elements method; numerical techniques; convergence; satellite information systems; microwave devices; waveguide; polarizer; diaphragm; differential phase shift; axial ratio; crosspolar discrimination.Abstract
Context. Today, there is a rapid expansion of the range of modern branches of science and technology, which actively use satellite telecommunication systems to receive, process and transmit various information. These radioelectronic systems quite often require an increase of the volumes of information, which they are processing and transmitting. Increase of the volumes of transmitted information in two times can be achieved by using dual-polarization antenna systems and devices. Nowadays, most part of the specialists, who are engaged in the development of various modern polarization-processing microwave devices, carry out their numerical modeling and optimization using variational techniques, methods of integral equations, method of fields matching in partial regions. The methods with division of the internal region of the device into elementary cells are applied most actively. Among them in the time domain the most often used approach is finite difference method with the decomposition at hexagonal mesh, while and in the frequency domain the finite elements method with the adaptive tetrahedral mesh is applied. Therefore, the estimation of the speed and accuracy of these methods with the purpose of determination of more effective among them is a relevant problem.
Objective. The goal of the research is comparison of speed and accuracy of the calculations of electromagnetic characteristics of waveguide polarizers using FEM and FDTD methods, as well as the comparison of the convergence of these methods for the analysis of polarization-processing microwave devices with diaphragms.
Method. For the calculations and analysis of electromagnetic characteristics in the article we used the method of finite differences in the time domain (FDTD) and the method of finite elements in the frequency domain (FEM). In FEM the volume is split into the tetrahedral mesh cells. In FDTD the computational domain is divided into hexagonal mesh cells.
Results. It was found that the convergence of voltage standing wave ratio for the waveguide polarizer is fast for both methods. It was obtained that the convergence of the characteristics of differential phase shift, axial ratio, and crosspolar discrimination of the developed microwave device turned out to be much more sensitive to the number of mesh cells used. Moreover, in the research it was obtained by calculations that the computation time by the finite elements method in the frequency domain is more than 2 times less than the corresponding time required for calculations by the finite difference time domain method. When using the finite elements method in the frequency domain the corresponding number of tetrahedral mesh cells is 10 times less than the number of hexagonal mesh cells, which are used in the finite difference time domain method.
Conclusions. Performed investigations have shown that FEM in the frequency domain, which applies an adaptive tetrahedral mesh, is more efficient than the FDTD method for the calculations of phase and polarization characteristics of modern waveguide polarizers and other microwave devices for various applications.
References
Virone G., Tascone R., Peverinin O.A., Orta R. Optimum iris set concept for waveguide polarizers, IEEE Microwave and Wireless Components Letters, 2007, Vol. 17, No. 3, pp. 202–204. DOI:10.1109/LMWC.2006.890474.
Hwang S., Ahn B.-C. New design method for a dual band waveguide iris polarizer, IEEE International symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 16–17 of August 2007: proceedings, pp. 435–438. DOI: 10.1109/MAPE.2007.4393644.
Virone G., Tascone R., Peverinin O.A., Addamo G., Orta R. Combined-phase-shift waveguide polarizer, IEEE Microwave and Wireless Comp. Letters, 2008, Vol. 18, No. 8, pp. 509–511. DOI: 10.1109/LMWC.2008.2001005.
Hwang S.-M., Kim J.-M., Lee K.-H. Study on design parameters of waveguide polarizer for satellite communication, IEEE Asia-Pacific Conf. on Antennas and Propagation, Singapore, 27–29 of August 2012: proceedings, pp. 153–154. DOI: 10.1109/APCAP.2012.6333202.
Yang D.-Y., Lee M.-S. Waveguide iris polarizers for Kuband satellite antenna feeds, Journal of the Korea Acade-mia-Industrial cooperation Societly, 2012, Vol. 13, No. 7, pp. 3201–3206. DOI:10.5762/KAIS.13.7.3201.
Dubrovka F.F., Piltyay S.I. A novel wideband coaxial polarizer, IX Int. Conf. on Antenna Theory and Tech. Odessa, Ukraine, 16–20 of September 2013, proceedings, pp. 473–474. DOI: 10.1109/ICATT.2013.6650816.
Kulik D. Yu., Mospan L. P., Perov A. O., Kolmakova N. G. Compact-size polarization rotators on the basis of irises with rectangular slots, Telecommunications and Radio Engineering, 2016, Vol. 75, No. 1, pp. 1–9. DOI: 10.1615/TelecomRadEng.v75.i1.10
Piltyay S.I. High performance extended C-band 3.4–4.8 GHz dual circular polarization feed system, XI Int. Conf. on Antenna Theory and Tech. Kyiv, Ukraine, 24–27 of May 2017, proceedings, pp. 284–287. DOI: 10.1109/ICATT.2017.7972644.
Zhang N., Wang Y.-L., Chen J.-Z., Wu B., Li G. Design of K/Ka-band diplex circular polarizer with high isolation, International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 7–11 of December 2018, proceedings. DOI: 10.1109/ICMMT.2018.8563363.
Kirilenko A. A., Steshenko S. O., Derkach V. N., Ostryzhnyi Y. M. A tunable compact polarizer in a circular waveguide, IEEE Transactions on Microwave Theory and Techniques, 2019, Vol. 67, No. 2, pp. 592–596. DOI:10.1109/TMTT.2018.2881089.
Piltyay S., Bulashenko A., and Shuliak V., Development and optimization of microwave guide polarizers using equivalent network method, Journal of Electromagnetic Waves and Applications, 2021, Vol. 35. DOI: 10.1080/09205071.2021.1980913.
Piltyay S., Bulashenko A., Fesyuk I., Bulashenko O. Comparative analysis of compact satellite polarizers based on a guide with diaphragms, Advanced Electromagnetics, 2021, Vol. 10, No. 2, pp. 44–55. DOI: 10.77167aem.v10i2.1713.
Bulashenko A.V., Piltyay S.I. Equivalent microwave circuit technique for waveguide iris polarizers development, Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, 2020, Vol. 83, pp. 17–28. DOI: 10.20535/RADAP.2020.83.17-28.
Ruiz-Cruz J.A., Fahmi M.M., Fouladi S.A., Mansour R.R. Waveguide antenna feeders with integrated reconfigurable dual circular polarization, IEEE Transactions on Microwave Theory and Techniques, 2011, Vol. 59, No. 12, pp. 3365–3374. DOI: 10.1109/TMTT.2011.2170581.
Wang X., Huang X., Jin X. Novel square/rectangle waveguide septum polarizer, IEEE International Conference on Ubiguitous Wireless Broadband, Nanjing, China, 16–19 of October 2016, proceedings, pp. 725–726. DOI: 10.1109/ICUWB.2016.7790510.
Mrnka M., Pavlovic M., Raida Z. Antenna range illuminator based on a septum polarizer and dual-mode horn, IEEE Antennas and Propagation Magazine, 2016, Vol. 58, No. 4, pp. 82–86. DOI: 10.1109/MAP.2016.2569444.
Nikolic N., Weily A., Kekic I., Smith S. L., Smart K. W. A septum polarizer with integrated square to circular tapered waveguide, Int. Symposium on Antennas and Propagation, Boston, USA, 8–13 of July 2018, proceedings, pp. 725–726. DOI: 10.1109/APUSNCURSINRSM.2018.8608909.
Deutschmann B., Jacob A.F. Broadband septum polarizer with triangular common port, IEEE Transactions on Microwave Theory and Techniques, 2020, Vol. 68, No. 2, pp. 693–700. DOI: 10.1109/TMTT.2019.2951138.
Dubrovka F. F., Piltyay S. I., Sushko O., Dubrovka R. R., Lytvyn M. M., Lytvyn S. M. Compact X-band steppedthickness septum polarizer, IEEE Ukrainian Microwave Week. Kharkiv, Ukraine, 21–25 of September 2020, proceedings,pp. 135–138. DOI: 10.1109/UkrMW49653.2020.9252583.
Dubrovka F., S. Martunyuk, R. Dubrovka et al. Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station, IEEE Ukrainian Microwave Week, Kharkiv, Ukraine, 21–25 of September 2020: proceedings, pp. 196–202. DOI:10.1109/UkrMW49653.2020.9252600.
Cano J.L., Mediavilla A. On the accurate full characterization of septum polarizers through simple amplitude measurements in back-to-back configuration, IEEE Transactions on Microwave Theory and Techniques, Vol. 69, no. 1, pp. 179–188. DOI: 10.1109/TMTT.2020.3020639.
Subbarao B., Fusco V.F. Compact coaxial-fed CP polarizer, IEEE Antennas and Wireless Propagation Letters, 2004, Vol. 3, pp. 145–147. DOI: 10.1109/LAWP.2004.831084.
Mohseni S. H., Kashani F. H., Fallah M. A new profile for metal post circular waveguide polarizer, Progress in Electromagnetics Research Symposium, Cambridge, USA, 5–8 of July 2010: proceedings, pp. 703–705. DOI: 10.1109/CONECCT50063.2020.9198499.
Chittora A., Yadav S. V. A compact circular waveguide polarizer with higher order mode excitation, IEEE Int. Conf. on Electronics, Computing and Com. Technologies, Bangalore, India, 2–4 of July 2020, proceedings. DOI: 10.1109/CONECCT50063.2020.9198499.
Piltyay S., Bulashenko A., Sushko O., Bulashenko O., Demchenko I. Analytical modeling and optimization of new Kuband tunable square waveguide iris-post polarizer, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, Vol. 34, No. 5, pp. 1–27. DOI: 10.1002/jnm.2890.
Piltyay S., Bulashenko A., Shuliak V., Bulashenko O., Electromagnetic simulation of new tunable guide polarizers with diaphragms and pins, Advanced Electromagnetics, 2021, Vol. 10, Nо. 3, pp. 24–30. DOI: 10.7716/aem.v10i3.1737.
Kamikura M., Naruse M., Asayama S., Satou N., Shan W., Sekimoto Y. Development of a submillimeter double-ridged waveguide ortho-mode transducer (OMT) for the 385–500 GHz band, Journal of Infrared Millimeter and Terahertz Waves, 2010, Vol. 31, No. 6, pp. 697–707. DOI: https://doi.org/10.1007/s10762-010-9632-1.
Dubrovka F.F., Piltyay S.I. A high performance ultrawideband orthomode transducer and a dual-polarized quadridged horn antenna based on it, VIII Int. Conf. on Antenna Theory and Techniques. Kyiv, Ukraine, 20–23 of September 2011, proceedings, pp. 176–178. DOI: 10.1109/ICATT.2011.6170737.
Leal-Sevillano C. A., Reck T. J., Chattopadhyay G., Ruiz-Cruz J. A., Montejo-Garai J. R., Rebollar J. M. Development of a wideband compact orthomode transducer for the 180–270 GHz band, IEEE Transactions on Terahertz Science and Technology, 2014, Vol. 4, No. 5, pp. 634–636. DOI: 10.1109/TTHZ.2014.2336540.
Virone G., Peverinin O. A., Lumia M., Farooqui M. Z., Addamo G., Tascone R. W-Band orthomode transducer for dense focal-plane clusters, IEEE Microwave and Wireless Comp. Letters, 2015, Vol. 25, No. 2, pp. 85–87. DOI: 10.1109/LMWC.2014.2373638.
Valente G., Montisci G., Pisanu T., Navarrini A., Marongiu P., Casula G.A. A compact L-band orthomode transducer for radio astronomical receivers at cryogenic temperature, IEEE Transactions on Microwave Theory and Techniques, 2015, Vol. 63, No. 10, pp. 3218–3227. DOI: 10.1109/TMTT.2015.2464809.
Ruiz-Cruz J.A., Montejo-Garai J.R., Leal-Sevillano C.A., Rebollar J. M. Orthomode transducers with folded doublesymmetry junctions for broadband and compact antenna feeds, IEEE Transactions on Antennas and Propagation, 2018, Vol. 66, no. 3, pp. 1160–1168. DOI: 10.1109/TAP.2018.2794364.
Menargues E., Capdevila S., Debogovic T., Dimitriades A.I., Simon L., Garcia-Vigueras M., Mosing J.R., Skrivervik A.K., Rijk E. Four-port broadband orthomode transducer enabling arbitrary interelement spacing, IEEE Transactions on Microwave Theory and Techniques, 2018, Vol. 66, No. 12, pp. 5521–5530. DOI: 10.1109/TMTT.2018.2878208.
Pollak A. W., Jones M. E. A compact quad-ridge orthogonal mode transducer with wide operational bandwidth, IEEE Antennas and Wireless Propagation Letters, 2018, Vol. 17, No. 3, pp. 422–425. DOI: 10.1109/LAWP.2018.2793465.
Sakr A. A., Dyab W. M., Wu K. Theory of polarizationselective coupling and its application to design of orthomode transducers, IEEE Transactions on Antennas and Propagation, 2018, Vol. 66, No. 2, pp. 749–762, 2018. DOI: 10.1109/TAP.2017.2778015.
Gomez-Torrent A., Shah U., Oberhammer J. Compact silicon-micromachined wideband 220-330-GHz turnstile orthomode transducer, IEEE Transactions on Terahertz Science and Technology, 2019, Vol. 9, No.1, pp. 38–46. DOI: 10.1109/TTHZ.2018.2882745.
Gerhardt L., Castro F., Muller C., Castro M. Compact symmetric opposed port orthomode transducer, IEEE Microwave and Wireless Components Letters, 2019, vol. 29, no.7, pp. 471–473. DOI: 10.1109/LMWC.2019.2917770.
Abdelaal M.A., Kishk A.A. Ka-band 3-D-printed wideband groove gap waveguide orthomode transducer, IEEE Transactions on Microwave Theory and Techniques, 2019, Vol. 67, No. 8, pp. 3361–3369. DOI: 10.1109/TMTT.2019.2919630.
Molero C., Garcia-Vigueras M. Circuit modeling of 3-D cells to Design versatile full-metal polarizers, IEEE Transactions on Microwave Theory and Techniques, 2019, Vol. 67, No. 4, pp. 1357–1369. DOI: 10.1109/TMTT.2019.2898828.
Quan Yu., Yang J., Wang H., Zaman A.U. A simple asymmetric orthomode transducer based on groove gap waveguide, IEEE Microwave and Wireless Components Letters, 2020, Vol. 30, No. 10, pp. 953–956. DOI: 10.1109/LMWC.2020.3016333.
Wu Q., Fan C., Yang Y., Shi X. Ultra-compact taper branching orthomode tranducer, International Journal of RF and Microvave Computer-adide Engineering, 2020, Vol. 3, pp. 1–6. DOI: 10.1002/MMCE.22215.
Manshari S., Koziel S., Leifsson L. Compact dual-polarized corrugated horn antenna for satellite communication, IEEE Transactions on Antennas and Propagation, 2020, Vol. 68, No. 7, pp. 5122–5129. DOI: 10.1109/TAP.2020.2980337.
Dubrovka F. F., Piltyay S. I. Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds, XI Int. Conf. on Antenna Theory and Tech. Kyiv, Ukraine, 24–27 of May 2017, proceedings, pp. 277–280. DOI: 10.1109/ICATT.2017.7972642.
Jazani G., Pirhadi A. Design of dual-polariswd (RHCP/LHCP) quad-ridged antenna with wideband septum polarizer waveguide feed, IET Microwaves, Antennas & Propagations, 2018, Vol. 12, No. 9, pp.1541–1545. DOI: 10.1049/iet-map.2017.0611.
Piltyay S. I. Enhanced C-band coaxial orthomode transducer, Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparato-buduvannia, 2014, Vol. 58, pp. 27–34. DOI: 10.20535/RADAP.2014.58.27-34.
Granet C., Zhang H. Z., Forsyth A. R., Graves G. R., Doherty P., Greence K. J., James G. L., Sykes P., Bird T. S., Sinclair M. W., Moore G. The designing, manufacturing, and testing of a dual-band feed system for the Parkes radio telescope, IEEE Antennas and Propagation Magazine, 2005, Vol. 47, No. 3, pp. 13–19. DOI: 10.1109/MAP.2005.1532537.
Dubrovka F. F., Piltyay S. I. Eigenmodes of coaxial quadridged waveguides. Theory, Radioelectronics and Communications Systems, 2014, Vol. 57, No. 1, pp. 1–30. DOI: 10.3103/S0735272714010014.
Dubrovka F. F., Piltyay S. I. Eigenmodes of coaxial quadridged waveguides. Numerical Results, Radioelectronics and Communications Systems, 2014, Vol. 57, No. 2, pp. 59–69. DOI: 10.3103/S0735272714020010.
Piltyay S. I. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides, 14-th Int. Conf. on Mathematical Methods in Electromagnetic Theory. Kyiv, Ukraine, 28–30 of August 2012, pp. 492–495. DOI: 10.1109/MMET.2012.6331195.
Piltyay S. I. Radiation of the thin-walled circular waveguide aperture at co- and crosspolarization, Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, 2009, Vol. 39, pp. 70–76. DOI10.20535/RADAP.2009.39.70-76.
Naydenko V., Piltyay S. Evolution of radiopulses radiated by Hertz’s dipole in vacuum, 12th Int. Conf. on Mathematical Methods in Electromagnetic Theory, Odessa, Ukraine, 1–2 of July 2008: proceedings, pp. 492–495. DOI: 10.1109/MMET.2008.4580972.
Dubrovka F. F., Piltyay S. I. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides, ХІ Int. Conference on Modern Problems of Radio Engineering, Telecomm. and Computer Science. Slavske, Ukraine, 21–24 of February 2012, proceedings, P. 191.
Dubrovka F. F., Piltyay S. I. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse fieldmatching technique. Part 1. Theory, Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, 2013, Vol. 54, pp. 13–23. DOI10.20535/RADAP.2013.54.13-23.
Dubrovka F.F., Piltyay S.I. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Numerical results, Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, 2013, Vol. 55, pp. 13–23. DOI: 10.20535/RADAP.2013.55.13-23.
Kirilenko A. A., Kulik D. Yu., Pricolotin S. A., Rud L. A., Steshenko S. A. Stepped approximation technique for designing coaxial waveguide polarizers, IX Int. Conf. on Antenna Theory and Tech. Odessa, Ukraine, 16–20 of September 2013, proceedings, pp. 470–472. DOI: 10.1109/ICATT.2013.6650815.
Kirilenko A. A., Kulik D. Yu., Prikolotin S. A., Rud L. A., Steshenko S. A. Design and optimization of broadband ridged coaxial waveguide polarizers, International Kharkov Symposium on Physics and Engineering of Microwaves Millimeter and Submillimeter Waves. Kharkov, Ukraine, 23–28 of June 2013, proceedings, pp. 445–447. DOI: 10.1109/MSMW.2013.6622082.
Bulashenko A. V., Piltyay S. I., Kalinichenko Y. I., Zabegalov I. V. Waveguide polarizer for radar and satellite systems,Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, 2021, Vol. 86, pp. 5–13. DOI: 10.20535/RADAP.2021.86.5-13
Bulashenko A., Piltyay S., Dikhtyaruk I., and Bulashenko O. FDTD and wave matrix simulation of adjustable DBS-band waveguide polarizer, Journal of Electromagnetic Waves and Applications, 2021, Vol. 35, DOI: 10.1080/09205071.2021.1995897.
Bulashenko А.V. Evaluation of D2D Communications in 5G, Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, 2020, Vol. 81, pp. 21–29. DOI: 10.20535/RADAP.2020.81.21-29.
Bulashenko A. V. Combined сriterion for the choice of routing based on D2D technology, Radio Electronics, Computer Science, Control, 2021, No. 1, pp. 7–13. DOI: 10.15588/1607-3274-2021-1-1.
Zhao C., Fumeaux C. Mode-matching analysis of phase shifter in substrate-integrated waveguide technology, IX International Conference on Computational Electromagnetics, Shanghai, China, 20–22 of March 2019, proceedings. DOI: 10.1109/COMPEM.2019.8779223.
Yang Y.-M., Yuan C.-W., Cheng G.-X., Qian B.-L. Kuband rectangular waveguide wide side dimension adjustable phase shifter, IEEE Transactions on Plasma Science, 2015, Vol. 43, No. 5, pp. 1666–1669. DOI: 10.1109/TPS.2014.2370074.
Zhang Q., Yan C., Liu L. Studies on mechanical tunable waveguide phase shifters for phased-array antenna applications, IEEE International Symposium on Phased Array Systems and Technology. Waltham, USA, 18–21 of October 2016. proceedings. DOI: 10.1109/TPS.2016.7832555.
Muneer B., Qi Z., Shanjia X. A broadband tunable multilayer substrate integrated waveguide phase shifter, IEEE Microwave and Wireless Components Letters, 2015, Vol. 25, No. 4, pp. 220–222. DOI: 10.1109/LMWC.2015.2400923.
Ibrahim A.A., Shaman H.N., Sarabandi K. A Sub-THz rectangular waveguide phase shifter using piezoelectric-based tunable artificial magnetic conductor, IEEE Transactions on Terahertz Science and Technology, 2018, Vol. 8, No. 6, pp. 666–680. DOI: 10.1109/TTHZ.2018.2866018.
Der E.T., Jones T.R., Daneshmand M. Miniaturized 4*4 Butler matrix and tunable phase shifter using ridged halfmode substrate integrated waveguide, IEEE Transactions on Microwave Theory and Techniques, 2020, Vol. 68, No. 8, pp. 3379–3388. DOI: 10.1109/TAP.2020.2989798.
Zhu B., Chen J., Zhong W. A hybrid finite-element / finitedifference method with implicit-explicit time stepping scheme for Maxwell’s equations, IEEE Int. Conference on Microwave Technology and Computational Electromagnetic, Beijing, China, 22–25 of May 2011, pp. 481–484, proceedings. DOI: 10.1109/ICMTCE.2011.5915564.
Classen C., Bandlow B., Schuhmann R. Local approximation based material averaging approach in the finite integration technique, IEEE Transactions on Magnetics, 2012, Vol. 48, No. 2, pp. 447–450. DOI: 10.1109/TMAG.2011.2176317.
Šekeljić N. J., Ilić M. M., Notaroš B. M. Higher order timedomain finite-element method for microwave device modeling with generalized hexahedral elements, IEEE Transactions on Microwave Theory and Techniques, 2013, Vol. 61, No. 4, pp. 1425–1434. DOI: 10.1109/TMTT.2013.2246186.
Marechal Y., Ramdane B., Botelho D. P. Computational performances of natural element and finite element methods, IEEE Transactions on Magnetics, 2014, Vol. 50, No. 2. DOI: 10.1109/TMAG.2013.2285259.
Sakata T., Mifune T., Matsuo T. Optimal subgrid connection for space-time finite integration technique, IEEE Conference on Electromagnetic Field Computation, Miami, USA, 13–16 of November 2016, proceedings. DOI: 10.1109/CEFC.2016.7816159.
Sakata Y., T. Sakata, T. Mifune, T. Matsuo Optimal subgrid connection for space-time finite integration technique, IEEE Transactions on Magnetics, 2017, Vol. 53, No. 6. DOI: 10.1109/TMAG.2017.2655626.
Liu N., Cai G., Zhu C., Huang Y., Liu Q.H. The mixed finite element method with mass lumping for computing optical waveguide modes, IEEE Journal of Selected Topics in Quantum Electronics, 2015, Vol. 22, No. 2. DOI: 10.1109/JSTQE.2015.2473689.
Sun Q., Zhang R., Zhan Q., Liu Q. H. 3-D implicit-explicit hybrid finite difference/spectral element/finite element time domain method without a buffer zone, IEEE Transactions on Antennas and Propagation, 2019, Vol. 67, No. 8, pp. 5469–5476. DOI: 10.1109/TAP.2019.2913740.
Xu J., G. Xie. A novel hybrid method of spatially filtered FDTD and subgridding technique, IEEE Access, 2019, Vol. 7, pp. 85622–85626. DOI: 10.1109/ACCESS.2019.2925835.
Kazemzadeh M., Xu W., N.G.R. Broderick Faster and more accurate time domain electromagnetic simulation using space transformation, IEEE Photonics Journal, 2020, Vol. 12, No. 4, pp. 1–13. DOI: 10.1109/JPHOT.2020.3005704.
Kazemzadeh M. R., Broderick N.G.R., Xu W. Novel timedomain electromagnetic simulation using triangular meshes by applying space curvature, IEEE Open Journal on Antennas and Propagation, 2020, Vol. 1, pp. 387–395. DOI: 10.1109/OJAP.2020.3011920.
Milligan T. A. Modern Antenna Design. Hoboken, New Jersey, John Wiley and Sons, 2005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 С. І. Пільтяй, А. В. Булашенко, О. В. Биковський, А. В. Булашенко
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.