MODIFIED ELLIPTICAL COORDINATE SYSTEM FOR PROBLEMS OF MATHEMATICAL PHYSICS WITH ELLIPTICAL SYMMETRY CYLINDER

Authors

  • M. Popov Kyiv National Taras Shevchenko University, Ukraine
  • I. V. Zavislyak Kyiv National Taras Shevchenko University, Ukraine
  • G. P. Golovach Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2009-2-3

Abstract

The original modified elliptical coordinate system is submitted, its properties are considered, useful relationships are given. It was suggested to use this coordinate system for mathematical physics problems with the symmetry of the elliptical cylinder, in particular for eigenwaves and eigen oscillations problems in waveguides and of elliptic cross-section resonators, the examples of application were demonstrated.

Author Biographies

M. Popov, Kyiv National Taras Shevchenko University

Postgraduate

I. V. Zavislyak, Kyiv National Taras Shevchenko University

Doctor of Physics and Mathematics, Professor

G. P. Golovach, Taras Shevchenko National University of Kyiv

PhD, Associate Professor

References

Mahmoud S. F. Electromagnetic waveguides: theory and applications / S. F. Mahmoud. – London: Peter Peregrinus Ltd., 1991. – 228 p.

Dyott R. B. Elliptical Fiber Waveguides / R. B. Dyott. – Norwood, MA: Artech House, 1995. – 217 p.

De Wames R. E. Magnetostatic surface modes in an axially magnetized elliptical cylinder / R. E. De Wames, T. Wolfram // Appl. Phys. Lett. – 1970. – Vol. 16, № 8. – P. 305-308.

Ango A. Matematika dlya elektro- i radioinzhenerov / A. Ango. – M.: Nauka, 1965. – 779 s.

Ivanov V. I. Konformnyye izobrazheniya i ikh prilozheniya / V. I. Ivanov, V. YU. Popov. – M. : Editorial URSS, 2002. – 324 s.

Miyazaki Y. Radio Wave absorption analysis of coated Elliptic cylinders with lossy magnetic ferrite films using conformal mapping method / Y. Miyazaki // 3rd International Symposium on Electromagnetic Compatibility. – Beijing (China), 2002. – P. 432–437.

Roussigne Y. Spin waves in stripe submitted to a perpendicular applied field / Y. Roussigne, P. Moch // J. Phys. Condense Matter. – 2005. – Vol. 17, № 10. – P. 1645–1652.

Gurevich A. G. Magnitnyye kolebaniya i volny / A. G. Gurevich, G. A. Melkov. – M.: Fizmatlit., 1994. – 464 s.

Zavislyak I. V. Poverkhnostnyye magnitostaticheskiye kolebaniya v ellipticheskikh otverstiyakh i tsilindrakh / I. V. Zavislyak, G. P. Golovach, M. A. Popov, V. F. Romanyuk // RE. – 2006. – T. 51, № 2. – S. 213–220.

Popov M. A. Poverkhnostnyye magnitostaticheskiye kolebaniya v ferritovykh trubkakh ellipticheskogo secheniya / M. A. Popov, I. V. Zavislyak // Izvestiya vuzov. Radioelektronika. – 2006. – T. 49, № 6. – S. 3–11.

Popov M. A. Modelling of the magnetostatic surface oscillations in el l ipt ical nanotubes / M. A. Popov, I. V. Zavislyak // UFZH. – 2008. – T. 53, № 7. – S. 706-711.

Popov M. A. Poverkhnostnyye magnitostaticheskiye kolebaniya v ellipticheskikh tsilindricheskikh magnitnykh domenakh / M. A. Popov, I. V. Zavislyak // FTT. – 2009. – T. 51, № 1. – S. 81–84.

Published

2024-09-25

How to Cite

Popov, M., Zavislyak, I. V., & Golovach, G. P. (2024). MODIFIED ELLIPTICAL COORDINATE SYSTEM FOR PROBLEMS OF MATHEMATICAL PHYSICS WITH ELLIPTICAL SYMMETRY CYLINDER. Radio Electronics, Computer Science, Control, (2), 16. https://doi.org/10.15588/1607-3274-2009-2-3