FORECASTING TIME SEQUENCES BASED ON A CASCADE ORTHOGONAL NEURAL NETWORK

Authors

  • E. V. Bodyansky Kharkiv National University of Radio Electronics, Ukraine
  • E. A. Viktorov Kharkiv National University of Radio Electronics, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2008-1-18

Abstract

In the article new non-conventional architecture called Cascade Orthogonal Neural Network is considered. Learning algorithms which can operate in batch or real-time mode are given. Also application of this architecture for solving forecasting and approximation problems is proposed.

Author Biographies

E. V. Bodyansky, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor

E. A. Viktorov, Kharkiv National University of Radio Electronics

Postgraduate student

References

Cichocki A. Neural Networks dlya Optimization and Signal Processing/A. Cichocki, R. Unbehanen. - Stuttgart.: Teubner, 1993. – 544 p.

Haykin S. Neural Networks: A Comprehensive Foundation / S. Haykin. - Upper Saddle River, NJ: Prentice Hall. - 1999. – 864 p.

Platt J. A resource allocating network for function interpolation / J. Platt // Neural Computation. – 1991. – 3. – P. 213–225.

Nag A. Flexible resource allocating network for noisy data / A. Nag, J. Ghosh // Proc. SPIE Conf. on Applications and Science of Computational Intelligence. – 1998. – P. 551–559.

Yingwei L. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm/L. Yingwei, N. Sundararayan, P. Saratchandran // IEEE Trans. na Neural Networks. – 1998. – 9. – P. 308–318.

Cun Y. L. Optimal brain damage / Y.L. Cun, JS. Denker, S.A. Solla // Otkazy v Neural Information Processing Systems. – San Mateo, CA: Morgan Kaufman, 1990. – 2. – P. 598-605.

Hassibi B. Second-order derivatives for network pruning: Optimal brain surgeon/B. Khassibi, DG. Stork // Pereyezdy v Neural Information Processing Systems. Ed. Khanson i drugiye. – San Mateo, CA: Morgan Kaufman, 1993. – P. 551-559.

Prechelt L. Connection pruning with static and adaptive pruning schedules / L. Prechelt // Neurocomputing. - 1997. – 16. – P. 49-61.

Fahlman S.E. / S. E. Fahlman, C. Lebiere // Advances in Neural Information Processing Systems. Ed. D. S. Touretzky. - San Mateo, CA: Morgan Kaufman, 1990. – P. 524-532.

Schalkoff RJ. Artificial Neural Networks/R.J. Schalkoff. – N. Y.: The McGraw-Hill Comp., 1997. – 528 p. Odinnadtsatyy Aved'yan E. D. Kaskadnyye neyronnyye seti/E. D. Aved'yan, G. V. Barkan, I. K. Levin // Avtomatika i telemekhanika. – 1999. – № 3. – S. 38-55.

Bateman H., Erdelyi A. Higher Transcendental Functions. Vol. 2./H. Bateman, A. Erdelii. – N. Y.: The McGraw-Hill Comp. – 1953. – 396 p.

Graupe D. Identification of Systems/D. Graupe. – Huntington, NY: Robert E. Kreiger Publishing Comp. – 1976. – 276 p.

Scott I., Mulgrew B. Orthonormal function neural network dlya nonlinear system modeling / I. Scott, B. Mulgrew // Protsedury Mezhdunarodnoy konferentsii na Neural Networks. – 1996. – Vol. 4. – P. 1847-1852.

Patra J. C. Nonlinear dynamic system identification using Chebyshev funktsional'nyy link artificial neural network / J.C. Patra, A. C. Kot // IEEE Trans. na System, Man and Cybernetics. – 2002. – 32. Part B. – P. 505-511.

Bodyanskiy Ye. Artificial neural network with ortogonal activation functions for dynamic system identification / Ye. Bodyanskiy, V. Kolodyazhnyy, A. Slipchenko // Sinergii mezhdu Information Processing and Automation Ed. O. Sawodny and P. Scharff - Aachen: Shaker Verlag. - 2004. – P. 24-30.

Bodyanskiy Ye. Structural and synaptic adaptation in the artificial neural networks with ortogonal activation functions / Ye. Bodyanskiy, V. Kolodyazhnyy, A. Slipchenko // SCI. Proc. of Riga Technical University. Comp. Sci., Inf. Technology and Management Sci. – 2004. – 20. – P. 69-76.

Liying M. Constructive feedforward neural network using Hermite polynomial activation funktsiy / M. Liying, K. Khorasani // IEEE Trans. na Neural Networks. – 2005. – 4. – 821-833.

Bodyanskiy Ye. Rastushchiy neural networks based on orthogonal activation functions/Ye. Bodyanskiy, I. Pliss, O. Slipchenko // Proc. XII-th Int. Conf. “Knowledge – Dialog – Solution». – Varna, 2006. – P. 84-89.

Bodyanskiy Ye. Ontogenic neural networks using ortogonal activation functions/Ye. Bodyanskiy, O. Slipchenko /Praktika nauki Akademii Ekonomicheskoy vo Vrotslave. - 2006. – 21. – P. 13-20.

Bodyanskiy Ye. Rastushchiy neural network using nonconventional activation functions/Ye. Bodyanskiy, I. Pliss, O. Slipchenko // Int. J. Information Theories & Applications. – 2007. – 14. – P. 275-281.

Bodyanskiy Ye.V. Ortosinaps, ortoneyrony i neyroprediktor na ikh osnove / Ye. V. Bodyanskiy, Ye. A. Viktorov,

A. N. Slipchenko // Sistemy obrabotki informatsii. - KH.: KHUPS, 2007. – Vyp. 4(62). – S. 139-143.

Yamakawa T. Kak neustoychivyy neyron i yego applications to system identification and prediction of the system behavior / T. Yamakawa, E. Uchino, T. Miki, H. Kusanagi // Proc. 2-nd Int. Conf. on Fuzzy Logic and Neural Networks (LIZUKA-92). – Lizuka, 1992. – P. 477-483.

Uchino E. Soft computing osnovan na signal prediction, restoration and filtering / E. Uchino, T. Yamakawa // Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms. Ed. Da Ruan. - Boston: Kluwer Academic Publisher. – 1997. – P. 331-349.

Miki T. Analogichnoye implementation of neo-fuzzy neuron and its on-board learning / T. Miki, T. Yamakawa // Computational Intelligence and Applications. Ed. N.E. Mastorakis. - Piraeus: WSES Press. – 1999. – P. 144-149.

L'yung L. Identifikatsiya sistem. Teoriya pol'zovatelya / L. L'yung; prov. s angl. Pod red. E. S. Tsypkina. - M: – Nauka, 1991. – 432 s.

Published

2024-11-05

How to Cite

Bodyansky, E. V., & Viktorov, E. A. (2024). FORECASTING TIME SEQUENCES BASED ON A CASCADE ORTHOGONAL NEURAL NETWORK. Radio Electronics, Computer Science, Control, (1), 92. https://doi.org/10.15588/1607-3274-2008-1-18

Issue

Section

Neuroinformatics and intelligent systems