FORECASTING TIME SEQUENCES BASED ON A CASCADE ORTHOGONAL NEURAL NETWORK
DOI:
https://doi.org/10.15588/1607-3274-2008-1-18Abstract
In the article new non-conventional architecture called Cascade Orthogonal Neural Network is considered. Learning algorithms which can operate in batch or real-time mode are given. Also application of this architecture for solving forecasting and approximation problems is proposed.
References
Cichocki A. Neural Networks dlya Optimization and Signal Processing/A. Cichocki, R. Unbehanen. - Stuttgart.: Teubner, 1993. – 544 p.
Haykin S. Neural Networks: A Comprehensive Foundation / S. Haykin. - Upper Saddle River, NJ: Prentice Hall. - 1999. – 864 p.
Platt J. A resource allocating network for function interpolation / J. Platt // Neural Computation. – 1991. – 3. – P. 213–225.
Nag A. Flexible resource allocating network for noisy data / A. Nag, J. Ghosh // Proc. SPIE Conf. on Applications and Science of Computational Intelligence. – 1998. – P. 551–559.
Yingwei L. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm/L. Yingwei, N. Sundararayan, P. Saratchandran // IEEE Trans. na Neural Networks. – 1998. – 9. – P. 308–318.
Cun Y. L. Optimal brain damage / Y.L. Cun, JS. Denker, S.A. Solla // Otkazy v Neural Information Processing Systems. – San Mateo, CA: Morgan Kaufman, 1990. – 2. – P. 598-605.
Hassibi B. Second-order derivatives for network pruning: Optimal brain surgeon/B. Khassibi, DG. Stork // Pereyezdy v Neural Information Processing Systems. Ed. Khanson i drugiye. – San Mateo, CA: Morgan Kaufman, 1993. – P. 551-559.
Prechelt L. Connection pruning with static and adaptive pruning schedules / L. Prechelt // Neurocomputing. - 1997. – 16. – P. 49-61.
Fahlman S.E. / S. E. Fahlman, C. Lebiere // Advances in Neural Information Processing Systems. Ed. D. S. Touretzky. - San Mateo, CA: Morgan Kaufman, 1990. – P. 524-532.
Schalkoff RJ. Artificial Neural Networks/R.J. Schalkoff. – N. Y.: The McGraw-Hill Comp., 1997. – 528 p. Odinnadtsatyy Aved'yan E. D. Kaskadnyye neyronnyye seti/E. D. Aved'yan, G. V. Barkan, I. K. Levin // Avtomatika i telemekhanika. – 1999. – № 3. – S. 38-55.
Bateman H., Erdelyi A. Higher Transcendental Functions. Vol. 2./H. Bateman, A. Erdelii. – N. Y.: The McGraw-Hill Comp. – 1953. – 396 p.
Graupe D. Identification of Systems/D. Graupe. – Huntington, NY: Robert E. Kreiger Publishing Comp. – 1976. – 276 p.
Scott I., Mulgrew B. Orthonormal function neural network dlya nonlinear system modeling / I. Scott, B. Mulgrew // Protsedury Mezhdunarodnoy konferentsii na Neural Networks. – 1996. – Vol. 4. – P. 1847-1852.
Patra J. C. Nonlinear dynamic system identification using Chebyshev funktsional'nyy link artificial neural network / J.C. Patra, A. C. Kot // IEEE Trans. na System, Man and Cybernetics. – 2002. – 32. Part B. – P. 505-511.
Bodyanskiy Ye. Artificial neural network with ortogonal activation functions for dynamic system identification / Ye. Bodyanskiy, V. Kolodyazhnyy, A. Slipchenko // Sinergii mezhdu Information Processing and Automation Ed. O. Sawodny and P. Scharff - Aachen: Shaker Verlag. - 2004. – P. 24-30.
Bodyanskiy Ye. Structural and synaptic adaptation in the artificial neural networks with ortogonal activation functions / Ye. Bodyanskiy, V. Kolodyazhnyy, A. Slipchenko // SCI. Proc. of Riga Technical University. Comp. Sci., Inf. Technology and Management Sci. – 2004. – 20. – P. 69-76.
Liying M. Constructive feedforward neural network using Hermite polynomial activation funktsiy / M. Liying, K. Khorasani // IEEE Trans. na Neural Networks. – 2005. – 4. – 821-833.
Bodyanskiy Ye. Rastushchiy neural networks based on orthogonal activation functions/Ye. Bodyanskiy, I. Pliss, O. Slipchenko // Proc. XII-th Int. Conf. “Knowledge – Dialog – Solution». – Varna, 2006. – P. 84-89.
Bodyanskiy Ye. Ontogenic neural networks using ortogonal activation functions/Ye. Bodyanskiy, O. Slipchenko /Praktika nauki Akademii Ekonomicheskoy vo Vrotslave. - 2006. – 21. – P. 13-20.
Bodyanskiy Ye. Rastushchiy neural network using nonconventional activation functions/Ye. Bodyanskiy, I. Pliss, O. Slipchenko // Int. J. Information Theories & Applications. – 2007. – 14. – P. 275-281.
Bodyanskiy Ye.V. Ortosinaps, ortoneyrony i neyroprediktor na ikh osnove / Ye. V. Bodyanskiy, Ye. A. Viktorov,
A. N. Slipchenko // Sistemy obrabotki informatsii. - KH.: KHUPS, 2007. – Vyp. 4(62). – S. 139-143.
Yamakawa T. Kak neustoychivyy neyron i yego applications to system identification and prediction of the system behavior / T. Yamakawa, E. Uchino, T. Miki, H. Kusanagi // Proc. 2-nd Int. Conf. on Fuzzy Logic and Neural Networks (LIZUKA-92). – Lizuka, 1992. – P. 477-483.
Uchino E. Soft computing osnovan na signal prediction, restoration and filtering / E. Uchino, T. Yamakawa // Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms. Ed. Da Ruan. - Boston: Kluwer Academic Publisher. – 1997. – P. 331-349.
Miki T. Analogichnoye implementation of neo-fuzzy neuron and its on-board learning / T. Miki, T. Yamakawa // Computational Intelligence and Applications. Ed. N.E. Mastorakis. - Piraeus: WSES Press. – 1999. – P. 144-149.
L'yung L. Identifikatsiya sistem. Teoriya pol'zovatelya / L. L'yung; prov. s angl. Pod red. E. S. Tsypkina. - M: – Nauka, 1991. – 432 s.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 E. V. Bodyansky, E. A. Viktorov
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons Licensing Notifications in the Copyright Notices
The journal allows the authors to hold the copyright without restrictions and to retain publishing rights without restrictions.
The journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles.
The journal allows to reuse and remixing of its content, in accordance with a Creative Commons license СС BY -SA.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CC BY-SA that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.