ANALYSIS OF MODIFICATIONS OF SELF-ORGANIZING KOHONEN MAPS BY THE CRITERIA OF REGULARITY AND ACCURACY OF APPROXIMATION

Authors

  • T. V. Kiprich Zaporizhzhya National Technical University, Ukraine
  • V. I. Dubrovin Zaporizhzhya National Technical University, Ukraine

DOI:

https://doi.org/10.15588/1607-3274-2007-2-19

Abstract

The interference problem of accuracy and regularity of the net among various self-organizing Kohonen’s map modifications is considered. The comparative analysis of these modifications over the cycles amount of training map, errors of quantization and topographical neurons ordering is given.

Author Biographies

T. V. Kiprich, Zaporizhzhya National Technical University

Postgraduate student

V. I. Dubrovin, Zaporizhzhya National Technical University

Candidate of Technical Sciences, Associate Professor

References

Josef Goppert. Wolfgang Rosenstiel Regularized SOMTraning: A solution to the Topology-Approximation Dilemma? Rezhim dostupa: http://citeseer.ist.psu.edu/ 422534.html, svobodnyy. – Zagl. s ekrana. – Angl.

Saymon Khaykin. Neyronnyye seti: polnyy kurs, 2-ye izdaniye // Per. s angl. M.: Izdatel'skiy dom «Vil'yams », 2006. – S. 1104.

J. J. Verbeek, N. Vlassis. The generative self-organizing map: a probabilistic generalization of Kohonen’s SOM // Technical Report IAS-UVA-02-03 on European Symposium on Artificial Neural Networks 2003, Amsterdam. Dostupnyy rezhim: http://citeseer.ist.psu.edu/verbeek02generative. html, svobodnyy. – Zagl. s ekrana. – Angl.

Juha Vesanto, Johan Himberg. SOM Toolbox for Matlab5. Dostupnyy rezhim: http://www.cis.hut.fi/projects/somtoolbox/ package/papers/techrep.zip, svobodnyy. – Zagl. s ekrana. – Angl.

Zinov'yev A. YU. Vizualizatsiya mnogomernykh dannykh: Monografiya. Krasnoyarsk: IPTS KGTU, 2000. – 168 s.

Amalendu Roy. A survey on data clustering using selforganizing maps. Dostupnyy rezhim: http://www.cs. ndsu.nodak.edu/~amroy/courses.html, svobodnyy. – Zagl. s ekrana. – Angl.

http://www.ihes.fr/~zinovyev/vida/vidaexpert.htm.

Published

2024-11-19

How to Cite

Kiprich, T. V., & Dubrovin, V. I. (2024). ANALYSIS OF MODIFICATIONS OF SELF-ORGANIZING KOHONEN MAPS BY THE CRITERIA OF REGULARITY AND ACCURACY OF APPROXIMATION. Radio Electronics, Computer Science, Control, (2), 96. https://doi.org/10.15588/1607-3274-2007-2-19

Issue

Section

Neuroinformatics and intelligent systems